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State estimation theory 

 

1. Kalman Filter 

2. Estimation with signal dependent noise 
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Subject was instructed to pull on a knob that was fixed on a rigid wall.  A)  EMG recordings from arm and leg muscles.  

Before biceps is activated, the brain activates the leg muscles to stabilize the lower body and prevent sway due to the 

anticipated pulling force on the upper body.  B) When a rigid bar is placed on the upper body, the leg muscles are not 

activated when biceps is activated.  (Cordo and Nashner, 1982)  
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Effect of eye movement on the memory of a visual stimulus.  In the top panel, the filled circle represents the fixation 

point, the asterisk indicates the location of the visual stimulus, and the dashed circle indicates the receptive field a cell 

in the LIP region of the parietal cortex.  A) Discharge to the onset and offset of a visual stimulus in the cell’s receptive 

field.  Abbreviations: H. eye, horizontal eye position; Stim, stimulus; V. eye, vertical eye position.  B) Discharge during 

the time period in which a saccade brings the stimulus into the cell’s receptive field.  The cell’s discharge increased 

before the saccade brought the stimulus into the cell’s receptive field.  (From (Duhamel et al., 1992)  



Why predict sensory consequences of motor commands? 



Subject looked at a moving cursor while a group of dots appeared on the screen for 300ms.  In some trials the dots would 

remain still (A) while in other trials they would move together left or right with a constant speed (B).  Subject indicated the 

direction of motion of the dots.  From this result, the authors estimated the speed of subjective stationarity, i.e., the speed of 

dots for which the subject perceived them to be stationary.  C) The unfilled circles represent performance of control subjects.  

Regardless of the speed of the cursor, they perceived the dots to be stationary only if their speed was near zero.  The filled 

triangles represent performance of subject RW.  As the speed of the cursor increased, RW perceived the dots to be stationary if 

their speed was near the speed of the cursor.  (Haarmeier et al., 1997)  



Disorders of agency in schizophrenia relate to an inability to compensate for sensory consequences of self-generated 

motor commands.  In a paradigm similar to that shown in the last figure, volunteers estimated whether during motion of a 

cursor the background moved to the right or left.  By varying the background speed, at each cursor speed the 

experimenters estimated the speed of perceptual stationarity, i.e., the speed of background motion for which the subject 

saw the background to be stationary.  They then computed a compensation index as the difference between speed of 

eye movement and speed of background when perceived to be stationary, divided by speed of eye movement.  The 

subset of schizophrenic patients who had delusional symptoms showed a greater deficit than control in their ability to 

compensate for sensory consequences of self-generated motor commands.  (From (Lindner et al., 2005))  
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Combining predictions with observations 



Device a and device b provide independent estimates of a hidden variable (position on a map).  Each device has a 

Gaussian noise property.  The ellipses describe the region centered on the mean of the distribution that contains 

10%, 25%, and 50% of the data under the distribution.  The maximum likelihood estimate of the hidden variable is 

marked by the distribution at the center. 

State estimation: the hiking in the woods problem 
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Maximum likelihood estimate for the hiking 

problem. 



Optimal integration of sensory information by the brain 



Parameter variance depends only on input selection and noise 
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A noisy process produces 

n data points and we form 

an ML estimate of w. 

We run the noisy process 

again with the same 

sequence of x’s and re-

estimate w: 

The distribution of the 

resulting w will have a var-

cov that depends only on 

the sequence of inputs, the 

bases that encode those 

inputs, and the noise 

sigma. 



The Gaussian distribution and its var-cov matrix 
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A 1-D Gaussian distribution is defined as  

In n dimensions, it generalizes to 

When x is a vector, the variance is 

expressed in terms of a covariance 

matrix C, where ρij corresponds to the 

degree of correlation between variables 

xi and xj 
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x1 and x2 are positively correlated x1 and x2 are not correlated x1 and x2 are negatively correlated 



Parameter uncertainty: Example 1 

•  Input history:   
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x1 was “on” most of the time.  I’m pretty 

certain about w1.  However, x2 was “on” 

only once, so I’m uncertain about w2. 
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Parameter uncertainty: Example 2 

•  Input history:   
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x1 and x2 were “on” mostly together.  The 

weight var-cov matrix shows that what I 

learned is that: 

I do not know individual values of w1 and w2 

with much certainty. 

x1 appeared slightly more often than x2, so 

I’m a little more certain about the value of 

w1. 
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Parameter uncertainty: Example 3 

•  Input history:   
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x2 was mostly “on”. I’m pretty certain about 

w2, but I am very uncertain about w1.  

Occasionally x1 and x2 were on together, so 

I have some reason to believe that: 
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Effect of uncertainty on learning rate 

•  When you observe an error in trial n, the amount that you should change w 

should depend on how certain you are about w.  The more certain you are, the 

less you should be influenced by the error.  The less certain you are, the more 

you should “pay attention” to the error.   

 ( 1) ( ) ( ) ( ) ( ) ( )n n n n n T ny   w w k x w

mx1 mx1 

Kalman gain 

error 

Rudolph E. Kalman (1960) A new approach to linear filtering and 

prediction problems.  Transactions of the ASME–Journal of Basic 

Engineering, 82 (Series D): 35-45. 
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Example of the a variable learning gain: running estimate of average 
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Kalman gain: learning rate decreases as the number of 

samples increase 

As n increases, we trust our past estimate 

w(n-1) a lot more than the new 

observation y(n) 

Past estimate New measure 

w(n) is the online estimate of the mean of y 



Example of a variable learning gain: running estimate of variance 

  

 

   

   

 

 

2
2 ( )
( )

1

2
( ) ( )

1

1 2 2
( ) ( ) ( ) ( )

1

2
2 ( ) ( )
( 1)

2
2 2 ( ) ( )
( 1) ( 1)

2
2 2 ( ) ( ) 2
( ) ( 1) ( 1)

1
ˆ

1

1

1
ˆ1

1 1
ˆ ˆ

1
ˆ ˆ ˆ

n
i

n

i

n
i n

i

n
i n n n

i

n n
n

n n
n n

n n
n n n

y E y
n

y w
n

y w y w
n

n y w
n

y w
n n

y w
n





 

  











 

 

 

 

 
    

  

 
    

 

   

 
    

 







sigma_hat is the online estimate of the var of y 



 
      
   

       

     
   

     

( ) ( ) * ( ) 2

1 ( ) ( ) ( )

* *

       0,

var

n n T n

n n nn n n T

n n

T
n n n n

T
n n

n n T

n n T n

y N

y

P

E E E

E

E

trace P E

  



 

  

 
  

                     

 
   

  

 
  

   
      

x w

w w k x w

w

w w w w

w w w w

w w

w w

We note that P is simply the var-cov matrix of our model weights.  It represents the uncertainty in our 

estimates of the model parameters. 

We want to update the weights in such a way as to minimize the trace of this variance.  The trace is 

the sum of the squared errors between our estimates of w and the true estimates. 

Some observations about variance of model parameters 



Trace of parameter var-cov matrix is the sum of squared parameter errors 
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Our objective is to find learning rate k (Kalman gain) such that we minimize the 

sum of the squared error in our parameter estimates.  This sum is the trace of the 

P matrix.  Therefore, given observation y(n), we want to find k such that we 

minimize the variance of our estimate w.  
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Objective: adjust learning gain in order to minimize model uncertainty 
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a prior variance of parameters 

a posterior variance of parameters 

my estimate of w* before I see y in trial n, 

given that I have seen y up to n-1 

error in trial n 

my estimate after I see y in trial n 

Hypothesis about data observation in trial n 
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Evolution of parameter uncertainty 
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Find K to minimize trace of uncertainty 
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Find K to minimize trace of uncertainty 



The Kalman gain 

  Td
tr AB B

dA


If I have a lot of uncertainty about my model, P is large 

compared to sigma.  I will learn a lot from the current error. 

If I am pretty certain about my model, P is small compared 

to sigma.  I will tend to ignore the current error. 
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Update of model uncertainty 
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Model uncertainty decreases with 

every data point that you observe. 
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In this model, we hypothesize that the 

hidden variables, i.e., the “true” 

weights, do not change from trial to 

trial. 

Observed 

variables 

Hidden variable 

x x x

A priori estimate of mean and variance of the 

hidden variable before I observe the first data point 

Update of the estimate of the hidden 

variable after I observed the data point 

Forward projection of the 

estimate to the next trial 
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In this model, we hypothesize that 

the hidden variables change from 

trial to trial. 
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A priori estimate of mean and variance of the 

hidden variable before I observe the first data point 
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•  Learning rate is proportional to the ratio between two uncertainties: my model vs. my 

measurement. 

•  After we observe an input x, the uncertainty associated with the weight of that input 

decreases. 

 

 

•  Because of state update noise Q, uncertainty increases as we form the prior for the 

next trial. 

Uncertainty about my model parameters 
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Uncertainty about my measurement 
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Comparison of Kalman gain to LMS 

See derivation of 

this in homework 
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In the Kalman gain approach, the P matrix depends on the history of all previous and current 

inputs.   In LMS, the learning rate is simply a constant that does not depend on past history. 
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With the Kalman gain, our estimate converges on a single pass over the data set.  In LMS, 

we don’t estimate the var-cov matrix P on each trial, but we will need multiple passes before 

our estimate converges. 



How to set the initial var-cov matrix 
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       Matrix inversion lemma 
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Set:  
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Now if we have absolutely no prior information on w, then before we see the first data point P(1|0) is 

infinity, and therefore its inverse in zero.  After we see the first data point, we will be using the above 

equation to update our estimate.  The updated estimate will become: 

 

   

1
11 1

111 1

T

T

P C R C

P C R C







 
 

 



A reasonable and conservative estimate of the initial value of P would be to set it to the above value.  

That is, set: 
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This expression is our maximum likelihood estimate that we got earlier.  Furthermore, the 

variance of our estimate is the variance of our maximum likelihood estimate.  Therefore, if 

we are naïve in the sense that we have no prior knowledge about the state that we wish 

to estimate, then a weighted combination of the two sources of information is the optimal 

solution.  On the other hand, if we also have a prior, e.g., we have hiked this path before 

and have some idea of where we might be, then the Kalman framework gives us the tools 

to weigh in this additional piece of information. 



State estimation with signal dependent noise 
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   u u
the state uncertainty increases with the size of the 

motor commands, and the Kalman gain decreases with 

the size of the state 


