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4. Forming beliefs: state estimation theory 

 

In a cocktail party, one of the toughest jobs (at least from a motor control standpoint) belongs to 

the fellow who brings the tray with the drinks.  As he holds the tray and you pick up the glass, he 

needs to compensate for the reduced mass on the tray and not spill the remaining drinks.  To 

convince yourself that that is indeed a tough task, try the following experiment.  Put out your 

hand with the palm side up and place a moderately heavy book on it.  Now have a friend stand in 

front of you and have him or her pick the book up off your hand.  You will note that despite the 

fact that you can see the friend reaching and picking up the book, you cannot hold your hand 

perfectly steady—it invariably moves up when the book is removed.  Now replace the book on 

your palm and go ahead and pick it up yourself.  When you pick up the book, the hand that used 

to hold the book remains perfectly still.   

 

This simple experiment suggests that when you send commands to your arm to pick up the book, 

your brain predicts the exact moment that the mass will be removed off the resting arm and the 

exact mass of the book, and then reduces the activity in the muscles that are producing force to 

hold up the book.  In contrast, when someone else picks up the book, you have to rely on your 

sensory system (rather than your predictions).  Because of the inherent delay in the sensory 

system, you are invariability late in reducing the activity of those same muscles.  Therefore, the 

brain appears to predict that lifting the book by one arm has consequences on the other arm, and 

compensates before arrival of sensory feedback.  (This is the reason why you should let the waiter 

pick up the glass and hand it to you.) 

 

The general idea is that our body is a multi-segmented structure in which motion of any one 

segment has consequences on the stability of other segments.  To maintain stability, the brain 

needs to be able to predict how motor commands to one segment affect the states of all other 

segments.  For example, consider an experiment by Paul Cordo and Lewis Nashner (1982) in 

which people were placed in a standing posture and were asked to pull on a door knob that was 

attached to a rigid wall (Fig. 4.1).  Pulling on the knob involves activation of the biceps muscle.  

However, doing so would not only result on a pulling force on the knob, but also a pulling force 

on your body.  If you‘re not careful, you will end up hitting your forehead on the wall.  To 

maintain stability, you need to activate muscles that resist bending (i.e., flexion) of the ankle and 

knee joints.  Indeed, Cordo and Nashner (1982) found that people activated their hamstring (a 

muscle that produces an extension torque on the ankle) and gastrocnemius (produces extension 
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torque on the knee) muscles just before they activated their biceps muscle (Fig. 4.1A).  That is, 

the brain stabilizes the leg just as it pulls on the knob. 

 

This may seem like a ‗hard-wired‘ reflex, but it is not.  Consider what happens when a rigid bar is 

placed in front of the chest, preventing the body from swaying forward.  In this case, a pull on the 

door knob would not cause a sway of the body no matter what you do with your knee and ankle 

muscles.  Indeed, with the rigid bar in place, people no longer activated the hamstring and 

gastrocnemius muscles as they pulled on the knob (Fig. 4.1B).   

 

These data suggest that as our brain plans and generates motor commands, it also predicts the 

sensory consequences and acts on the predicted consequences.  When standing upright without a 

rigid bar to lean against, pulling on the knob will flex the knee and ankles.  If we can predict that 

this is the sensory consequence of pulling on the knob, we can act on it by activating muscles that 

resist this flexion (the extensors).  When we have the rigid bar to lean against, the same pull on 

the knob will no longer flex the knee and ankles.  If we can predict this, we need to do nothing, 

which seems consistent with the data in Fig. 4.1. 

 

More direct evidence for the idea that the brain predicts the sensory consequences of motor 

commands comes from the work of Rene Duhamel, Carol Colby, and Michael Goldberg (1992).  

They trained monkeys to fixate a light spot and make a saccade to it whenever it jumped from one 

location to another.  They recorded from cells in the posterior parietal cortex (PPC), an area in the 

brain in which cells have receptive fields that depend on the location of the stimulus with respect 

to the fixation point.  Fig. 4.2A illustrates response of a cell that had its receptive field to the 

upper right of fixation.  When the stimulus was turned on in the receptive field of this cell 

(circular dashed line), the cell responded after about 60ms, which is a typical delay period.  Next, 

they had the monkey make a saccade by turning off the fixation point at right and re-displaying it 

at left (Fig. 4.2B).  They placed the stimulus in the upper right part with respect to the 2
nd

 fixation 

point.  In this way, when the animal was looking at the 1
st
 fixation point (the one on the right), 

there was nothing in the cell‘s receptive field.  When the animal looked at the 2
nd

 fixation point 

(the one on the left), the stimulus fell in the cell‘s receptive field.  However, if the brain predicts 

the sensory consequences of the motor commands, then one of the consequences of the command 

to move the eyes from one fixation to another is that after the completion of the movement, the 

stimulus will fall in the cell‘s receptive field.  And so, the cell might fire in anticipation of this 

event, rather than in passive response to the sensory input.  Indeed, the cell‘s response was around 
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the start of the saccade, rather than after its completion (Fig. 4.2B, note that saccades take about 

50ms to complete).  Therefore, some part of the brain predicted that as a consequence of the 

motor commands that move the eyes, a light stimulus would fall in the receptive field of this cell, 

and it began to fire in apparent anticipation. 

 

4.1 Why predict sensory consequences of motor commands? 

 

Why should the brain predict the sensory consequences of motor commands?  In the experiment 

where you lifted the book off your hand, the clear advantage of making sensory predictions is that 

the brain does not have to wait for the sensory measurements to know that it needs to shut-off the 

muscles that are holding up the book.  The delay in sensory measurements is long enough that it 

can cause stability problems.  Relying on predictions, rather than delayed measurements, allows 

one to overcome this delay.  However, in the case of the saccade shown in Fig. 4.2, it may be 

unclear why the brain should predict that the sensory consequences: why should a visually 

responsive cell be activated in anticipation of the sensory stimulus, as well as in response to that 

sensory stimulus?  After all, the visual stimulus will appear in the receptive field shortly after the 

saccade.  Why predict this event? 

 

One possibility is that our perception, i.e., our ability to estimate the state of our body and the 

external world, is always a combination of two streams of information: one in which our brain 

predicts what we should sense, and one in which our sensory system reports what was sensed.  

The advantage of this is that if our expectations or predictions are unbiased (i.e., their mean is not 

different from the ‗true‘ state), then our perception (and the decisions that are made based on that 

perception) will be better than if we had to rely on sensory measurements alone.  In a sense, our 

perception will be more accurate (e.g., less variable), if we combine what we predicted with what 

our sensory system measured.  This improved accuracy in perception is a fundamental advantage 

of making predictions about the sensory consequences of motor commands. 

 

Although this may seem like a fairly new idea, it was first proposed in the 11
th
 century by Ibn al-

Haytham, an Arab scientist (known in Europe as Alhazen), in his Book of Optics.  He was 

considering the moon illusion, the common belief that the moon looks larger when it is near the 

horizon.  Aristotle and Ptolemy had thought that this was due to a magnification caused by 

Earth‘s atmosphere (refraction theory).  However, this is not the case.  If you were to measure the 

size of the moon by taking a picture, you would measure a width that is 1.5% smaller at the 
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horizon than straight up in the sky.  That is, the image that falls on your retina is actually smaller 

when you are looking at the moon on the horizon (this is because the moon is actually farther 

away from you by half of the Earth‘s diameter when it is at the horizon).  So despite the fact that 

the moon at the horizon produces a visual image that is smaller than when it is overhead, we 

perceive it to be bigger at the horizon.  Ibn al-Haytham argued that the moon looked bigger at the 

horizon because perception was occurring in the brain, and not in the eyes.  He recognized that 

our perception of size depends not only on the size of the image on our retina, but also on our 

estimate of the object‘s distance.  At the horizon, the brain has cues like trees and buildings to 

judge distance of objects, whereas in the sky above, these cues are missing.  He argued that 

presence of these cues affected the brain‘s estimate of distance of the moon, making us perceive it 

to be much farther away at the horizon than overhead.  Perhaps we ‗see‘ the moon to be larger at 

the horizon because we believe it is much farther away at the horizon than overhead. 

 

(The term ‗belief‘ is used loosely here.  As we will see in the next chapter, different parts of our 

brain may have differing beliefs about size of a single object.  For example, we may verbally 

indicate that object A is bigger than object B, reflecting the belief of our perceptual system, but 

when we go to pick up object B, move our fingers apart more for it than when we go to pick up 

object A, reflecting the belief of our motor system.  The root cause of these apparently different 

beliefs about the property of a single object is poorly understood.  It is possible that it has 

something to do with the fact that each part of the brain may specialize in processing a different 

part of the sensory data.  For example, by focusing on the background of an image, some part of 

our visual system may get fooled and form an illusion, whereas by focusing on the foreground of 

an image, another part of our visual system may not form this illusion.  So there may not be a 

single ‗belief‘ in our brain about some issue, but multiple beliefs.  The belief that you express 

may depend on what part of your brain was queried.) 

 

In 1781 Immanuel Kant in his theory of idealism claimed that our perceptions are not the result of 

a physiological process in which, for example, the eyes faithfully transmit visual information to 

the brain, but rather, our perceptions are a result of a psychological process in which our brain 

combines what it already thinks, believes, knows, wants to see, with the sensory information to 

form a perception (Gilbert, 2006).  He wrote ―The understanding can intuit nothing, the senses 

can think nothing.  Only through their union can knowledge arise.‖ (I. Kant, Critique of Pure 

Reason, trans. N. K. Smith, 1781; New York: St. Martin‘s Press, 1965, p. 93.) 
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If we follow this line of reasoning and return to our example of predicting the sensory 

consequences of the motor commands that move the eyes in a saccade (Fig. 4.2B), we might 

guess that during the post-saccadic period, the brain combines what it predicted with what it 

currently senses.  The combination of the two streams of information would allow it to sense the 

world better than if it only had the sensory information stream.  That is, it would be able to ‗see‘ 

the stimulus better because it had two sources of information about it, rather than just one.   

 

Siavash Vaziri, Jörn Diedrichsen, and Shadmehr (2006) tested this idea.  In their control 

condition (Fig. 4.3A), subjects fixated a visual target and reached to it.  In their static condition, 

the target appeared in the peripheral vision.  The ability to estimate the location of objects that 

appear in peripheral vision is poor, and so the standard deviation of the reach endpoints was 

higher for these stimuli in the peripheral vision (Fig. 4.3B).  Therefore, in this experiment reach 

variability was a proxy for the goodness with which the brain could estimate the location of the 

visual target.  When the target was in the periphery, subjects could not localize it as well as when 

they looked straight at it.  Now, what if one could predict the location of the target?  Based on our 

theory, the brain should be able to localize it better, and this should result in less variable reaches 

to that target. 

 

In the remap condition, subjects looked at the target, and then looked away before they reached to 

the target.  When they looked away, the target had disappeared.  Presumably, during the saccade 

the brain predicts the new location of the target with respect to fixation (this is called remapping).  

So after the saccade completes, it can rely on the predicted target position to reach.  The endpoint 

variance in the remapped condition was much less than in the static condition (Fig. 4.3B).  The 

crucial test was in the combined condition in which subjects looked away from the target, and in 

the post-saccadic period the target reappeared for a brief period of time.  If the brain combined 

what it predicted about target position with the actual sensory feedback, then reach endpoint 

variance in the combined condition should be better than both the remap and the static conditions 

(Fig. 4.3B).  Indeed, this was the case, consistent with the idea that the brain predicted the sensory 

consequences of the saccade (remapping of the target) and then combined this prediction with the 

post-saccadic visual information to estimate the actual position of the target. 

 

Therefore, by predicting the sensory consequences of motor commands, the brain not only can 

over-come delay in sensory feedback, but perhaps more importantly, it can actually sense the 

world better than is possible form sensory feedback alone.  The latter comes about when our brain 
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combines what it has predicted with what it has measured.  A diagram that summarizes the idea 

of predicting the sensory consequences of motor commands is provided in Fig. 4.4.  An internal 

model that predicts the sensory consequences of motor commands is known as a forward model. 

 

4.2 Disorders in predicting the sensory consequences of motor commands 

 

The central idea is that our perception is based on a combination of two streams, one that arises 

from the motor system (predicting the sensory consequences), and the other that arises from the 

sensory system (measuring the sensory consequences).  If our brain could not accurately predict 

sensory consequences of our motor commands, then we would not be able to sense the world 

around us in a normal way.  An example of this is patient RW, a 35 year old man who was 

described by Thomas Haarmeier, Peter Thier, Marc Repnow, and Dirk Petersen (Haarmeier et al., 

1997).  RW suffered a stroke in a region covering parts of the parietal and occipital cortex, 

centered on an area that contains the vestibular cortex, a location in which cells are sensitive to 

visual motion.  RW complained of vertigo only when his eyes tracked visual objects, but not 

when his eyes were closed.  He explained that when he was watching his son run across a field (a 

condition in which his eyes smoothly moved to follow his son), he would see the boy running, but 

he would also perceive the rest of the visual scene (e.g., the trees) smoothly moving in the 

opposite direction.   

 

Haarmeier et al. conjectured that when RW moved his eyes, his brain was unable to predict the 

sensory consequences of the oculomotor commands.  As his eyes moved to follow his son, the 

trees moved in the opposite direction on his retina.  The healthy brain predicts that moving the 

eyes will have the sensory consequence of shifting the image of the stationary world on the retina.  

We do not perceive this shifting image as real motion of the world because we predict it to be a 

consequence of motion of our eyes.  In RW, perhaps his vertigo was a symptom of his brain‘s 

inability to predict such sensory consequences. 

 

To test this conjecture, Haarmeier et al. (Haarmeier et al., 1997) had RW sit in front of a 

computer monitor and keep his eyes on a moving cursor (Fig. 4.5).  As the cursor moved 

smoothly from left to right, random dots were displayed for 300ms.  In some trials the random 

dots would stay still, and in other trials the dots would move to the right or left with a constant 

speed.  On each trial they asked RW and some healthy volunteers to guess whether the random 

dots were moving to the left or right.  From the response that they recorded the authors estimated 
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the speed of motion of the random dots for which subjects sensed it to be stationary.  For healthy 

volunteers, the speed of subjective stationarity of the random dots was near zero, no matter what 

the speed of the moving cursor that they were looking at.  That is, regardless of whether the eyes 

moved quickly or slowly, healthy people perceived a stationary collection of dots as stationary 

(the unfilled circles in Fig. 4.5C).  However, RW saw the collection of dots as being stationary 

only when the dots moved at the same speed as the eyes (the filled symbols in Fig. 4.5B).  That is, 

for RW an object was stationary only if during the movement of the eye, its image remained 

stationary on the retina.   

 

You do not need to have a brain lesion to get a feel for what RW sees when he moves his eyes.  

Take a camera and aim it at a runner and try to move (i.e., ‗pan‘) so that the image of the runner 

stays at the center of the picture.  As you are moving the camera, take a picture.  That picture will 

show a sharply focused runner but a blurry background that appears to be moving in the opposite 

direction.  However, when you are following the runner with your naked eyes, the background 

appears perfectly still.  The reason is because your brain predicts the background image shift that 

should take place on the retina as you move your eyes, and combines it with the actual shift.  By 

combining the observed and predicted images, the parts that agree must have been stationary, and 

parts that disagree must have moved. 

 

In 1996, Chris Frith put forth the hypothesis that in schizophrenia, the symptoms of delusions, 

e.g., auditory hallucinations in which the patient hears voices, or has beliefs about someone else 

guiding their actions, are potentially related to a disorder in the brain‘s ability to interpret its own 

inner voice or covert action (Frith, 1996).  Chris Frith, Sarah Blakemore, and Daniel Wolpert 

(Frith et al., 2000) formalized this idea in terms of a problem in which the brain had an incorrect 

forward model.  This would result in the patients mistaking the sensory consequences of their 

own actions as consequences of actions of others, i.e., a misattribution of the cause of sensory 

events.   

 

An interesting test of this idea was performed by Axel Lindner, Peter Thier, Tilo Kircher, Thomas 

Haarmeier, and Dirk Leube (Lindner et al., 2005).  They essentially repeated the experiment that 

they had earlier performed on patient RW on a group of schizophrenic patients.  In this 

experiment, subjects watched a red dot that moved from left to right at a constant velocity (Fig. 

4.6).  They then presented a moving background for 200ms during the sweep of the target and 

asked the subject to report the direction of the background motion.  By varying the background 
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speed, they determined the velocity that produced about equal perception of rightward or leftward 

motion.  At this velocity of perceptual stationarity, they compared the speed of the background 

image (which ideally should be zero) with the speed of the eye movements (plotted in bar graph 

in Fig. 4.6).  In this figure, 100% implies that the subjects saw the background as stationary when 

in fact it was stationary.  Healthy subjects had a less than 100% performance, and this was 

attributed to the very limited time for which the background was presented.  However, for the 

schizophrenic patients who suffered from delusional symptoms, the performance was 

significantly worse, i.e., they had a harder time compensating for self-induced image motion.  

When these patients moved their eyes, they attributed more of the observed motion on their retina 

to movement of the external world than healthy controls. 

 

Of course, schizophrenia is a complex disease for which accurately estimating the sensory 

consequences of self-generated actions may be a minor component (if this is not the case, then 

why is patient RW not schizophrenic?).  Nevertheless, it is curious that for those patients who 

suffer from delusional symptoms, there is a tendency to have a motor disorder in perceiving self-

generated sensory consequences. 

 

4.3 Combining predictions with observations 

 

To combine two streams of information, one needs to apply a weighting to each stream.  In 

principle, the weight should be higher for the more reliable information source.  In the experiment 

shown in Fig. 4.3, the two sources of information are the remapped target (i.e., predicted target 

location), and the post-saccadic target (i.e., observed target location).  Vaziri et al. (2006) 

manipulated the reliability of the post-saccadic information by presenting the target for either a 

short or long period of time.  The idea was that the longer the information was available, its 

reliability would increase, and so the weight that the brain might assign to it should increase.  

Indeed, with increased post-saccadic target exposure in the combined condition, endpoint 

variance decreased, suggesting that the brain increased the weighting assigned to the observed 

sensory information source. 

 

The basic idea that emerges is that our estimate of the state of the world is a combination of two 

sources of information: what we predicted, and what we observed.  Konrad Körding and Daniel 

Wolpert (Kording and Wolpert, 2004) varied the reliability of these two hypothetical sources of 

information and tested the idea that perception was a weighted combination of the two sources.  
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They first trained subjects to reach to a goal location by providing them feedback via a cursor on 

a screen (the hand was never visible).  As the finger moved from the start position, the cursor 

disappeared.  Halfway to the target, the cursor re-appeared briefly (Fig. 4.7A).  However, its 

position was, on average, 1 cm to the right of the actual finger position, but on any given trial the 

actual displacement was chosen from a Gaussian distribution.  The objective was to produce a 

movement that placed the cursor inside the target.  

 

If you were a subject for this task, you might start by moving the finger straight to the target.  

You would note that in the middle of the movement the cursor appears about 1 cm to the right, so 

you would correct by moving the finger a little to the left.  After some practice, you‘d learn that 

when you produce motor commands that move the hand slightly to the left, you should, on 

average, see the cursor at about straight ahead.  Because the location of the cursor is probabilistic, 

the confidence that you have about this predicted sensory consequence of your motor command 

should be described by the variance of the Gaussian distribution that describes the displacement 

of the cursor (Fig. 4.7B, top row).  In this way, the experiment controlled the confidence that the 

brain should have in predicting the sensory consequences of its motor commands. 

 

To control the confidence that the brain should have regarding sensory measurements, they added 

noise to the display of the cursor: the cursor was displayed as a cloud of dots.  This induced 

uncertainty.  On some trials the cursor was shown clearly so the uncertainty regarding its position 

was low.  In other trials the uncertainty was high as the cursor was hidden in a cloud of noise.  

The idea was that on a given trial, when the subject observes the cursor position midway to the 

target, they will correct based on two sources of information: what they observed on this trial, and 

what they predicted regarding where the cursor should be.  For example, if on a given trial they 

see the cursor at 2 cm (Fig. 4.7B, middle row), they should combine this observation with their 

prediction (Fig. 4.7B, top row), to form a belief about cursor position that is somewhere between 

2 cm (observed) and 1 cm (predicted).  This ‗belief‘ would depend on how much weight (or 

uncertainty) they assign to the observed and predicted sources of information.  If the observed 

cursor is in a noisy cloud, they should rely more on their prediction (  line, Fig. 4.7A).  If the 

observed cursor is clear, they should rely more on their observation ( 0  line, Fig. 4.7A).  The 

weighting of the two sources should be inversely related to the variance of the distributions.  

Indeed, Körding and Wolpert‘s (2004) experimental data was consistent with this theoretical 

framework. 
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In summary, the data suggests that as the brain programs motor commands, it also predicts the 

sensory consequences.  Once the sensory system reports its measurements, the brain combines 

what it had predicted with the measurements to form a ‗belief‘ that represents its estimate of the 

state of the world.  Our actions are not simply based on our current sensory observations. Rather, 

our actions are based on an integration of the sensory observations with our predictions.  In 

engineering, this is called estimation theory. 

 

4.4 State estimation: the problem of hiking in the woods 

 

The problem of estimating the state of our body (or state of something else) has two components.  

The first is associated with learning to accurately predict what the sensory measurements of that 

state should be – this is our prior estimate of state.  The second is associated with combining the 

measured quantities with the predicted one to form a posterior estimate of state.  The first 

problem is one of model building, i.e., describing an internal model that predicts what our sensors 

should be telling, called a forward model.  The second problem is one of integration, i.e., 

describing how to form an estimate of state based on the two sources of information, the 

prediction and the observation.  Our goal here is to build a mathematical framework in which we 

can describe this problem.  Once the framework is in place, we will use it to try and account for 

some behaviors in people and other animals. 

 

To illuminate the basic problem that the brain faces, let us consider the following example.  Say 

that you are hiking in the woods and are concerned about getting lost.  To help with navigation, 

you have bought two Global Positioning System (GPS) devices.  One of the devices is European 

made and uses satellites operated by the European Union.  The other is made to work with the US 

satellites.  Therefore, you can assume that each uses an independent set of measurements as it 

provides you with a probability distribution regarding your position (Fig. 4.8).  Device a reports 

that your position is at coordinates  1,0a  y , with a probability distribution specified by a 

Gaussian with covariance aR  (a 2x2 matrix).  This is the location for which its probability 

distribution has a peak (i.e., the mean).  The second device reports that your position is at 

coordinate  4,0b  y , with a probability distribution with covariance bR .  Interestingly, your 

most likely location is not somewhere between the two centers of probability distributions.  
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Rather, given the uncertainties associated with each device, as depicted by the distributions 

shown in Fig. 4.8, your most likely location is probably at coordinates (+2.5, -1.5).   

 

To see why this is the case, suppose that the state that we wish to estimate (our position) is 

described by a 2x1 vector x , and the reading from each device is described by 2x1 vectors ay  

and 
by .  To estimate our position, we need to put forth a hypothesis regarding how the devices‘ 

readings are related to our position.  Suppose that our measurement, denoted by 4x1 vector 

 a by y y , is related to a hidden state (our position) x  by the following equation:  

 C y x ε  (4.1) 

This is our internal model.  It describes our belief about how the data that we observe is related to 

the hidden state that we wish to estimate.  In our internal model, we believe that the devices are 

unbiased.  Therefore, we set  
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where I is a 2x2 identity matrix.  We also believe that the noises inherent in the measurements of 

the devices are independent, zero mean, and distributed as a Gaussian:  
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where aR  and bR  are 2x2 symmetric matrices.  The expected value of y , written as  E y , is 

 E Cy x .  The variance of y , written as  var y , is    var var TC C R y x .  The 

probability distribution of y  is specified by a Gaussian: 

   , var TN C C C Ry x x . (4.4) 

This implies that if we ‗knew‘ our position x  with certainty, i.e. if  var 0x  (or alternatively, 

we stayed still and kept on taking measurements), the measurements from the devices would have 

the following distribution:   

    ,p N C Ry x x . (4.5) 
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This equation is called a likelihood.  It describes the probability distribution of an observation 

given that the thing that we want to estimate (the hidden state x ) is at a particular value.   To find 

our most likely position, we find the value for x  that maximizes this likelihood: 

      1

4

1 1
exp

2(2 )

T
p C R C

R

 
    

 
y x y x y x . (4.6) 

It is convenient to take the log of the above expression, arriving at  

      11 1
ln 2ln(2 ) ln

2 2

T
p R C R C      y x y x y x . (4.7) 

To find the location x  for which this quantity is maximum, we find the location at which its 

derivative is zero:  
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1 1ˆ T TC R C C R


 x y  (4.8) 

If we note that 

1

1

1

0

0

a

b

R
R

R







 
  
 

  and 
1 1 1T

a bC R R R      , then we can rewrite Eq. (4.8) as:   

    
1

1 1 1 1ˆ a b a a b bR R R R


     x y y  (4.9) 

Eq. (4.9) describes our maximum likelihood estimate of x .  Now if we simply stay still and keep 

taking measurements, our readings y  will keep changing.  These changes are due to the inherent 

noise in the devices, and will produce changes in our estimate x̂ .  Therefore, x̂  is a random 

variable with a distribution.  Its expected value is specified by Eq. (4.8) and its variance is:  

        
1

1 1 1ˆvar var
T

T T T TC R C C R R C C R C
 

   x y  (4.10) 

Assuming that we stay still and do not move around, then  var Ry .  Because R is symmetric 

(as are all variance-covariance matrices), the above equation simplifies to:  

    
1

1ˆvar TC R C


x  (4.11) 

Note that 
1 1 1T

a bC R R R       simplifies the above equation to:  

    
1

1 1ˆvar a bR R


  x  (4.12)  

The result in Eq. (4.9) indicates that our most likely location is one that weighs the reading from 

each device by the inverse of the device‘s probability covariance.  In other words, we should 
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discount the reading from each device according to the inverse of each device‘s uncertainty.  

Using Eq. (4.9) and Eq. (4.12), we have drawn the mean and variance of our maximum likelihood 

estimate in Fig. 4.8 (the distribution in the middle of the figure).  It is quite unlikely that you are 

somewhere between the centers of left and right distributions because  p y x  is quite low there.  

The most likely location, it turns out, is a bit south of the center of each distribution, at (+2.5, -

1.5).  Another important point to note is that the estimate of your position has a tighter 

distribution than either of the two sensors, i.e., it has a ‗smaller‘ variance.  Therefore, when you 

combined these two pieces of information, your result was an estimate that had a lower 

uncertainty than either of the two initial measures.  It is better to have two GPSs than one. 

 

4.5 Optimal integration of sensory information by the brain 

 

It turns out that this framework is quite relevant to how the brain perceives the environment and 

processes sensory information.  After all, we have multiple sensors.  For example, when we 

examine an object, we do so with both our hands and our eyes.  Marc Ernst and Marty Banks 

(2002) were first to demonstrate that when our brain makes a decision about a physical property 

of an object, it does so by combining various sensory information about that object in a way that 

is consistent with maximum likelihood state estimation.  

 

Ernst and Banks began by considering a hypothetical situation in which one has to estimate the 

height of an object.  Suppose that you use your index and thumb to hold an object.  Your 

somatosensory/haptic system reports its height.  Let us represent this information as a random 

variable hy  (a scalar quantity) that has as a distribution described by a Gaussian with variance 

2

h .  Similarly, your visual system provides you with information vy , which has a variance 
2

v . 

Our internal model is:  

 x y c ε  (4.13) 

where x  is the true height of the object,  
T

h vy yy ,  1 1
T

c  (which implies that your 

sensors are unbiased),  0,N Rε , and 
2 2,0;0,h vR      .  According to Eq. (4.9), your 

maximum likelihood estimate of the height of the object has the following distribution:  
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 

 

2 2

2 2 2 2

2 2

1 1
ˆ

1 1 1 1

1
ˆvar

1 1

h v
h v

h v h v

h v

E x y y

x

 

   

 

 
 




 (4.14) 

If the noise in the two sensors is equal, then the weights that you apply to the sensors (the 

coefficients in front of hy  and vy  in Eq. 4.14) are equal as well.  This case is illustrated in the left 

column of Fig. 4.9.  On the other hand, if the noise in hy  is larger than vy , your uncertainty for 

the haptic measure is greater and so you apply a smaller weight to its reading (illustrated in the 

right column of Fig. 4.9).  If one was to ask you to report the height of the object, of course you 

would not report your belief as a probability distribution.  To estimate this distribution, Ernst and 

Banks acquired a psychometric function, shown in the lower part of the graph in Fig. 4.9.  To 

acquire this function, they provided their subjects a standard object of height 5.5cm.  They then 

presented a second object of variable length and asked whether it was taller than the first object.  

If the subject represented the height of the standard object with a maximum likelihood estimate 

with a distribution of Eq. (4.14), then the probability of classifying the second object as being 

taller is simply the cumulative probability distribution of x̂ .  This is called a psychometric 

function, and is shown in the lower row of Fig. 4.9.  The point of subject equality (PSE) is the 

height at which the probability function is at 0.5.  Note that this point shift toward the estimate 

from vision when one is more certain about the visual measurement (right column of Fig. 4.9). 

 

The task at hand is to test whether the brain combines haptic and sensory information in a way 

that is consistent with maximum likelihood.  To test the theory, the first step is to estimate the 

noise in the haptic and visual sensors.  To do so, Ernst and Banks considered a situation in which 

both the standard and the second stimulus were of the same modality.  For example, a robot 

presented a virtual object (standard, of length 1 ) and then a second object (of length 1  ).  

[People held the handle of the robot and when they moved it, they felt a stiff surface of a given 

length.  So there was no real object there, just a sensation associated with running your hand 

along the surface of an object.]  The subject responded by choosing one that had a longer height.  

To make this decision, suppose that the subject‘s haptic sense represented the objects as 1y  and 

2y , where  2

1 1, hy N    and  2

2 1 , hy N   .  The estimate of the difference between 
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the two objects is 2 1
ˆ y y    and this random variable is a Gaussian with the following 

distribution:  2ˆ ,2 hN   .  The probability of picking the second object as being taller is:  

      2

2 1

0

ˆPr Pr 0 ; ,2 hy y N x dx


       (4.15) 

The term  2; , 2 hN x   represents a normal distribution of random variable x  with mean   and 

variance 
22 h .  To compute this integral, we use the ―error function‖:  

 

 

2

0

2

2
erf ( )

1
; , 1 erf

2 2

x

x

x e dx

x
N t dt




 











  
   

  





 

And so we have:  

  
1ˆPr 0 1 1 erf
2 2 h

  
       

  
 (4.16) 

For example, suppose that the second object is 3mm longer than the standard object, i.e., 3  .  

From Eq. (4.16), we would predict that if 
2 1h   (resulting in the two distributions plotted in Fig. 

4.10A), then the subject should pick object 2 as being larger with 98% probability.  In contrast, if 

2 2h  , then the subject should pick object 2 as being larger with 69% probability, and so on.  

The condition for which 3   and 
2 1h   is plotted in Fig. 4.10A.  The resulting distribution 

for ̂  is plotted in Fig. 4.10B.  The probability of Eq. (4.16) is plotted as a function of  , i.e., the 

difference in the lengths of the two objects, for various 
2

h  in Fig. 4.10C.  As the noise in the 

haptic sensor increases, the subject has more difficulty dissociating the two objects at a given 

length difference. 

 

In Eq. (4.16), notice that if we set 2 h  , then the probability of picking object two as being 

larger is always 84%.  So Ernst and Banks presented second objects of various   and found the 

one for which the subject was 84% correct (call it 
* ).  From the results in Fig. 4.11A we see 

that this object was about 5mm longer than the standard, i.e., 
* 5  .  Therefore, the noise in the 

haptic sensory pathway must be:  
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  
2

2 *1

2
h    

A similar procedure was performed to estimate the noise in the visual pathway.  Two objects 

were presented visually and as Fig. 4.11A suggests (0% noise curve), 84% probability of correct 

choice was for 
* 2.5  .  Therefore, 

2 24h v  .  In the final step of the experiment, Ernst and 

Banks used these noise parameters to predict how subjects would estimate the height of an object 

when the visual and haptic senses were both present (as in Fig. 4.9).  For example, subjects were 

presented with a standard object for which the haptic information indicated a height of 1  and 

visual information indicated a height of 1  .  Eq. (4.14) predicted that subjects would assign a 

weight of around 0.8 to the visual information and around 0.2 to the haptic information.  To 

estimate these weights, they presented a second object (for which the haptic and visual 

information agreed) and ask which one was taller.  The probability of the second object being 

taller is plotted in Fig. 4.11B, and the weight assigned to each sensory modality is plotted in Fig. 

4.11C.  The observed weights (Fig. 4.11C) agree quite well with the predicted values.  Note that 

for the 0% visual noise condition, the curve is shifted toward the mean of the visual information.  

One can also predict the variance of the estimate (Eq. 4.14), which specifies the rate of rise in the 

psychometric curve.  A proxy for this rate is a ‗discrimination threshold‘, defined as the 

difference between the point of subject equality and the height of the second stimulus when it is 

judged to be taller than the standard stimulus 84% of the time.  As the variance of the estimate 

increases, the rate of rise decreases, and the discrimination threshold increases.  Fig. 4.11D shows 

that the predicted value nicely matches the observed value.  They next repeated these steps for 

conditions in which noise was added to the visual display.  This reduced the weighting of the 

visual information, making the subjects rely more on the haptic information.  The predicted 

values continued to match the measured quantities. 

 

Therefore, the results showed that the brain combined visual and haptic information in a way that 

was similar to a maximum-likelihood estimator: a weight was assigned to each sensory modality 

and this weight was a function of the uncertainty in that modality. 

 

4.6 Uncertainty 

 

How does uncertainty come about?  It has something to do with the precision with which one 

knows some bit of information.  In particular, it seems to have something to do with the history of 
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how that information was acquired.  In our hiking in the wood example, the uncertainty of each 

GPS device had a particular shape because there were correlations along the two dimensions in 

which each device was making measurements.  Perhaps these correlations came about because of 

the position of the satellites, giving rise to the shape of the probability distribution.  Let us 

explore this idea a bit further in a scenario in which we control how we acquire information about 

a quantity that we wish to estimate. 

 

In Fig. 4.12 we have drawn points from three normal distributions.  In each distribution, the 

vector  1 2

T
x xx  is drawn from a Gaussian:  ,N Rx μ , with mean zero  0 0

T
μ  and 

covariance R .  This covariance is defined as: 

 

  

   
   

1 1 2

2 1 2

var cov ,

cov , var

T
R E

x x x

x x x

   
 

 
  
 

x μ x μ

 (4.16) 

In Fig. 4.12, the distribution on the left has a covariance matrix in which 1x  and 2x  are 

negatively correlated (the off-diagonal elements of the covariance matrix are negative).  This 

roughly corresponds to our GPS device a in Fig. 4.8.  We can now infer that the measurements 

that device a was taking along the east/west ( 1x ) and north/south ( 2x ) dimensions were showing 

negative correlations: as the measurement along one dimension increased, the measurement along 

the other dimension decreased.  So when device a reported its measurement, it was uncertain 

along the northwest-southeast dimension, but very certain along the southwest-northeast 

dimension.   

 

In Fig. 4.12 the distribution at right has a covariance in which 1x  and 2x  are positively 

correlated.  This roughly corresponds to our device b, indicating that for this device, as the 

measurement along one dimension increased, so did the measurement along the other dimension.  

The overlap between the left-most distribution and right-most distribution (assuming that the 

centers are not at the same location) would be maximum (i.e., most number of points likely to 

overlap) at somewhere along their diagonals. 

 

Our simple example illustrates the idea that in order for any system to combine two pieces of 

information about a single quantity, it needs to have a measure of uncertainty about each quantity.  
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That is, it needs to ‗know‘ the two pieces of information in terms of their probability 

distributions.  If the distribution is Gaussian, all we need to know are the mean and covariance. 

 

Now to illustrate how these correlations, i.e., uncertainties, arise during the process of acquiring 

information, let us consider the classic problem in linear regression.  On each trial i, you measure 

a scalar quantity 
( )iy .  However, your measurements are noisy.  The ‗true‘ value on that trial is 

*( )iy  and your measure is corrupted by a Gaussian noise that has zero mean and 
2  variance:  

  ( ) *( ) 2     0,i iy y N     (4.17) 

This means that the probability to find a value of 
( )iy within a given interval of the true value is 

 

2
2

2

1

( ) ( ) ( )

1 2

1
Pr[ * * ]

2

i i iy y y e d

 





  
 



       (4.18) 

We assume that the term 
*( )iy  is linearly related to a known quantity expressed as a N-

dimensional vector, ( )i
x : 

 *( ) ( )i T iy w x  (4.19) 

In the language of systems theory, ( )i
x  is an input vector and 

*( )iy  is the corresponding output 

generated by the linear transformation.  In this case the unknown multiplicative term 
T

w  is a 

1xN matrix – i.e. a row vector, mapping an N-dimensional vector into a single number.  

According to this simple model, noise is only affecting the observation of the output variable 

( )iy . More complex situations may involve noise in the input vector ( )i
x  and in the vector w .  

Our objective is to estimate the vector w  from a data set that includes pairs of input/output 

measures:       (1) (1) (2) (2) ( ) ( ), , , , , ,n nD y y y x x x .  Given our model in Eqs. (4.17) and 

(4.19), we can write the probability distribution of observing 
( )iy , given input ( )i

x  and 

parameters w  and 
2 : 

    ( ) ( ) ( ) 2,i i T ip y N x w x  (4.20) 

That is, we would expect 
( )iy  to be normally distributed with mean ( )T i

w x  and variance 
2 .  

The probability density function for observing the specific data that we were given is simply the 

joint probability density of all data points: 
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   

 
 

 
 

(1) ( ) (1) ( ) ( ) ( )

1

2
( ) ( )

1/ 2 2
21

2
( ) ( )

/ 2 2
2 1

, , , , , , , ,

1 1
exp

22

1 1
exp

22

n
n n i i

i

n
i T i

i

n
i T i

n
i

p y y p y

y

y

 













 
   

 
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



x x w x w

w x

w x

 (4.21) 

The quantity in Eq. (4.21) is a likelihood.  It describes how likely it is that given our model and 

its parameters, we would observe the specific collection of data  (1) ( ), , ny y .  Let us refer to 

our likelihood as  ,L w .  The parameters that we would like to estimate are w  and  .  If we 

have no other information about the parameters that we wish to estimate (i.e., no priors), then the 

best estimate of these parameters are those that maximize the likelihood.  We start by observing 

that the exponential function is monotonic in its argument. Therefore, the exponential is at a 

maximum when its argument is also at a maximum. Because in the Normal distribution of Eq. 

(4.20) the argument is always negative, the maximum of the likelihood function is attained when 

the argument of the exponential reaches a minimum. To put into a formula, we take the natural 

logarithm of the function that we wish to maximize: 

 

   

   

( ) ( )

1

2
( ) ( ) 2

2
1

log , log , ,

1
log 2

22

n
i i

i

n
i T i

i

L p y

n
y

 










   





w x w

w x

 (4.22)  

and look for its maximum.  To further simplify things, let us write the first sum in the second line 

of the above equation in matrix form.  Suppose we use vector y  and matrix X  to refer to 

collection of 
( )iy  and ( )i

x  (the vector ( )i
x  becomes a row in the matrix X ), and then rewrite Eq. 

(4.22).  This requires a little manipulation, but the final result is worth it. We begin by collecting 

all the ( )i
x vectors into a matrix, one vector per row: 

 

(1) (1) (1)

1 2

(2) (2) (2)

1 2

( ) ( ) ( )

1 2

N

N

n n n

N

x x x

x x x
X

x x x

 
 
 
 
 
  

 (4.23) 

and all the output data 
( )iy , in a column vector 
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y  (4.24) 

Then, the vector 
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 (4.25) 

has a Euclidean norm 

      
22 ( ) ( )

1

n
T i T i

i

X X X y w


        y w y w y w x . (4.26) 

Note that this provides a way to re-write the sum on the left side of Eq. (4.22). With this 

substitution, we obtain: 
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To find w at which this function is maximum, we find its derivative and set it equal to zero:  
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 (4.28) 
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We observe that this solution for w corresponds to a maximum of the log likelihood, because the 

second derivative (or Hessian) of log L : 

 
 2

2 2

log , 1 Td L
X X

d




 

w

w
 (4.29) 

is negative definite, if X  is full row rank (i.e. if ( )rank X N ). This result is interpreted 

intuitively by observing that the matrix  
1

T TX X X


 is the left inverse of the input data matrix, 

X . Therefore the maximum likelihood estimation of w  is analogous to a ratio of the output to 

the input.  We derive the same solution by looking for the parameters that minimize the square 

difference from the observed outputs and the outputs that are obtained by assuming the model of 

Eq. (4.19).  Thus, we have found a correspondence between the maximum likelihood estimation 

and the least-squares estimation, in this linear case with Gaussian noise. 

 

Eq. (4.28) represents our maximum likelihood estimate of w .  Similarly, to find the maximum 

likelihood estimate of noise parameter   we take the derivative of Eq. (4.27) with respect to   

and set it equal to zero.   
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However, it is important to note that because y is a random variable whose value is corrupted by 

random noise, our estimates ŵ  and  ̂  are also random variables.  To see why this is true, 

consider how we got our data set D : for some known set of inputs  
(1) ( ), , n

x x , we made a set 

of measurements 
(1) ( ), , ny y  that were generated by the ―true‖ parameter vector w  but were 

corrupted with random noise 
(1) ( ), , n  .   If someone gave the same inputs again to the system, 

it would not generate exactly the same measurements as before.  That is, given a set of inputs 

(1) ( ), , n
x x  in data set 

(1)D , we can estimate an optimal ŵ as in Eq. (4.28).  But if the same 

inputs are used for generating a second data set 
(2)D , our estimate ŵ would generally be 

different from 
(1)D .  Indeed if we do this over and over, we would see that ŵ has a distribution 
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that depends upon the statistics of the noise on the data.  We can compute this distribution as 

follows:   

 

 

   

 

1

1 1
*

1

ˆ T T

T T T T

T T

X X X

X X X X X X

X X X



 





 

 

w y

y ε

w ε

 (4.31) 

In Eq. (4.31), the vector *y  is the vector of ―true‖ outputs 
(1) (2) ( )* , * , , *

T
ny y y   and 

the term ε  is the corresponding vector random variable whose elements are the noises   in Eq. 

(4.17).   From Eq. (4.31) we can compute the probability distribution of ŵ : 

  
1

ˆ ,var T TN X X X
  

  
  

w w ε  (4.32) 

The term ‗var‘ inside the parenthesis is the variance-covariance matrix of the distribution.  We 

compute it as follows:   

 

       

   

 

1 1

1
2

1
2

var var
T

T T T T T

T
T T T

T

X X X X X X X X X

X X X I X X X

X X





  

 



 
 

 





ε ε

 (4.33) 

So, the probability distribution of our estimate ŵ  has a mean equal to the ‗true‘ value w , but a 

covariance that depends both on the measurement noise 
2  and the specific inputs ( )i

x  (recall 

that the rows of matrix X consists of ( )i
x ).  Intuitively, the variance of the vector w  is simply the 

ratio of the output variance to the input covariance. Because we have assumed that the input 

variable is noiseless, then a large excursion in the input vector value - corresponding to higher 

covariance values, would lead to a diminished uncertainty on the estimate ŵ .  Larger variability 

of the input corresponds to a broader exploration of the domain over which the transformation 

from x to y is defined.  Basically, this means that when we are given input data that ranges over a 

large region, we are more certain about our estimate ŵ .  Thus, it is not surprising that the 

estimate of w  becomes more accurate. In contrast, large amount of output variability can only 

reduce our confidence on the estimate of w . 
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Now, returning to the question at the beginning of this section: where does uncertainty in our 

estimate ŵ  come from?  From Eq. (4.33) we note that some of the uncertainty comes from the 

fact that our measurements 
( )iy  were affected by noise (with variance 

2 ).  If this noise was 

large, we would be more uncertain about our estimate.  But this point is trivial.  More 

interestingly, the uncertainty regarding ŵ  also depends on the history of inputs ( )i
x , which are 

the elements of the matrix X.  This is a very important idea and one that is worth thinking about. 

 

To see how the history of inputs ( )i
x  affects the probability distribution of ŵ , let us try some 

example data sets.  Suppose that we are given five data points, as shown in the table at the top 

part of Fig. 4.13A.  Each row is a data point, where  
( ) ( )( )
1 2

T
i ii x x 

 
x  and 

( ) *( )i iy y    (the 

noise is not explicitly specified in the table, but it has a normal distribution).  What we need to 

estimate is  1 2

T
w ww  in our model 

( ) ( )i T iy  w x .  We notice that in our data, 1x  is 

‗on‘ most of the time, 2x  is ‗on‘ once, and 1x  and 2x  are never ‗on‘ together.  So when we go 

and estimate 1w  and 2w , we should be able to estimate 1w  with a lot of confidence, but perhaps 

not so for 2w .  If we generate lots of data sets from this table (that is, we keep ( )i
x  as specified in 

this table and generate 
( ) *( )i iy y    by adding random noise), and find ŵ  for each data set, 

we will end up with a distribution shown in Fig. 4.13A.  The distribution demonstrates that we 

can be pretty certain of 1ŵ  but we will be fairly uncertain for 2ŵ .  This is simply a reflection of 

the amount of information we received for 1x  and 2x  (we got more information, in some vague 

sense, about 1x  than 2x ).  Furthermore, the distribution has zero covariance between 1ŵ  and 2ŵ , 

which is a reflection of the fact that 1x  and 2x  were never ‗on‘ together.  In the case of the data 

set in Fig. 4.13B, 1x  and 2x  are mostly ‗on‘ together.  The resulting ŵ will have the same mean 

as in the data in Fig. 4.13A (that is, the distribution is centered at +0.5, +0.5).  However, now all 

that we can say with certainty is that as 1ŵ  increases, 2ŵ  should decrease.   This is reflected in 

the negative covariance of the distribution. 

 

Therefore, in linear regression the probability distribution associated with the parameter that we 

are trying to estimate is implicitly a reflection of the statistics of inputs, that is, the data that we 

were given to form our estimate.  In a sense, the covariance of the probability distribution keeps a 
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record of this data.  In the hiking problem, the uncertainty of each device was due to the history 

of its measurements.  Similarly in the regression problem, the uncertainty of our estimate is due to 

the history of our measurements.  In the next chapter we will consider the problem of learning 

and we will see that when animals learn, they too appear to keep a measure of uncertainty about 

their estimates, and this uncertainty is a reflection of the history of the stimuli that they observed.  

 

4.7 State estimation and the Kalman filter 

 

In the hiking problem, we used the uncertainties of each device to combine the two 

measurements.  The problem is basically the same when you want to combine a predicted value 

for a quantity with the measured value for that same quantity.  For example, the evidence in Fig. 

4.7 suggests that when the brain estimates the position of the hand-held cursor, it does so by 

optimally combining the value that it predicted with the value that it measured in such a way as to 

render minimal the variance of this estimate.  The result is a ‗belief‘ or estimate that is a weighted 

combination of the predicted and measured values.   

 

Unfortunately, our framework is still quite weak as it suffers from two flaws.  First, we cannot 

incorporate our prior knowledge into the problem of estimation.  For example, if we have hiked in 

the region before, we have some idea of where we might be.  It is not clear how to combine this 

information with our readings from the GPS devices.  Second, when we make a movement, 

predictions and measurements are not quantities that occur once; they are continuous streams of 

information.  We need to continuously combine our predictions with observations, form beliefs, 

and then update our predictions for the future.   

 

To give you a simple example of this, consider the problem of lifting one of those insulated 

coffee cups that they sell for taking your coffee with you for a drive.  These cups have a lid that 

makes it impossible to see how much liquid is inside.  Suppose that at a coffee shop, the person 

behind the counter just placed such a cup on the counter, so you believe it to be full, but it is in 

fact empty.  When you go to lift it, your hand will jerk upward.  Your prediction about the cup‘s 

weight was larger than the amount reported by the proprioception from your arm.  Your belief 

about the actual weight will shift from your prediction toward the observation.  As the hand keeps 

moving upward, this belief will converge to the mean value reported by the sensory apparatus.  

The rate of this convergence will have a lot to do with how strongly the brain believed in its own 
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predictions, i.e., the uncertainty of the prediction.  Said in simple terms, if you have a belief that 

is very certain, it will take a lot of evidence (i.e., data) to change your mind.   

 

To modify our framework so we can approach this problem, it is useful to consider again the 

problem of regression, but now in a trial-by-trial basis rather than in a batch form in which all the 

data were given to us at once.  Suppose that on trial i, we are given input ( )i
x  and we use our 

current estimate ( )ˆ i
w  to predict that the output should be ( ) ( ) ( )ˆ ˆi i T iy  x w .  However, we observe 

the quantity 
( )iy  instead.  So we have a difference between what we predicted and what we 

observed.  Note that earlier we wrote it differently as ( ) ( ) ( )ˆ ˆi i T iy w x .  If two vectors have only 

real components, then the scalar product is symmetric, since  ( ) ( ) ( ) ( )ˆ ˆi T i i T iw x x w .  The first 

form, ( ) ( ) ( )ˆ ˆi i T iy  x w  will turn out to be convenient in the following derivation. We need to 

combine the two pieces of information in order to update our estimate:  

  ( 1) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆi i i i i T iy   w w k x w  (4.34) 

It seems rational that the term 
( )ik  (our ‗sensitivity to prediction error‘) should somehow reflect 

our uncertainty about our estimate. This term is a column vector with as many entries as the 

parameter vector  ( )ˆ i
w .  The quantity in parenthesis in Eq. (4.34) is a single number, the 

prediction error. If  ( )i
x  was oriented along a dimension for which ( )ˆ i

w  was uncertain then we 

should learn a lot from the prediction error.  If on the other hand ( )i
x  was oriented along a 

dimension for which our estimate of ( )ˆ i
w  was quite certain, then perhaps our prediction error 

would simply be due to measurement noise, and we should basically ignore it.   Of course, this is 

a simplification. A large error in a dimension in which we have great certainty would actually be 

likely to induce a large change in the estimate. However, this would be a rather ―catastrophic‖ or 

discontinuous change. Whereas here, we are considering only smooth gradual changes. The term 

( )ik  in Eq. (4.34) is called a Kalman gain.  It was named after Rudolph Kalman, an electrical 

engineer and mathematician working at the Research Institute for Advanced Study in Baltimore, 

Maryland.  He discovered a principled way to set this sensitivity (Kalman, 1960), reflecting both 

the uncertainty in the prediction and the uncertainty in the measurement. 

 

Let us change slightly the notation and refer to our prior knowledge about parameter w on trial n 

as 
 1

ˆ
n n

w .  That is, our estimate of w on trial n, given the past 1n   trials, is 
 1

ˆ
n n

w .  After 
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we make an observation (i.e. we measure 
( )ny ), we form a new or  ―posterior‖ estimate.  We can 

rewrite Eq. (4.34) using this new terminology:  

 
     1 1( ) ( ) ( )ˆ ˆ ˆ
n n n n n nn n n Ty

  
   

 
w w k x w  (4.35) 

We now express the value of the output 
( )ny  in terms of the true value of w and its associated 

uncertainty. This is done by inserting Eqs. (4.17) and (4.19) into (4.35):  

 

     

   

1 1( ) ( ) ( ) ( )

1( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ

ˆ

n n n n n nn n T n n T

n nn n T n n n n TI





 



 
    

 

   

w w k x w x w

k x w k k x w

 (4.36) 

Let us define 
 1n n

P


 to be the variance (i.e., uncertainty) of our prior estimate 
 1

ˆ
n n

w :  

 
   1 1

ˆvar
n n n n

P
  

  
 

w  (4.37) 

Similarly, we define 
 n n

P  to be the variance of our posterior estimate 
 ˆ
n n

w :  

 
   ˆvar
n n n n

P
 

  
 

w  (4.38) 

From Eq. (4.36), we can write our posterior variance as a function of the prior variance:  

 

         

     

1( ) ( ) ( ) ( ) ( ) ( ) ( )

1( ) ( ) ( ) ( ) 2 ( ) ( )

var
Tn n n nn n T n n T n n n T

Tn nn n T n n T n n T

P I P I

I P I









   

   

k x k x k k

k x k x k k

 (4.39) 

[The last term in Eq. (4.36) depends on w, which is not a random variable and has zero variance.]  

Now our problem is to set the term 
( )nk  in such a way so that our posterior estimate 

 ˆ
n n

w  is as 

certain as possible, i.e., it is minimum variance.  Therefore, our problem is to find 
( )nk  so to 

minimize 
 n n

P .   However, 
 n n

P  is a matrix, so we need to clarify what we mean by 

‗minimizing‘ it.  This requires us to first define the size or ―norm‖ of a matrix. The norm of a 

matrix must be a positive number whose value is zero only when the matrix is zero. There are 

several definitions that fit this criterion. One, for example, is the largest singular value. However, 

it would be difficult to use it for our purpose. Another kind of ‗norm‘ is simply the trace of a 

matrix.  This is clearly not a valid norm for all matrices, because a nonzero matrix can have a 

zero trace. However, the variance matrix can only have positive or zero terms along the main 

diagonal.  And it is easy to verify that if all the terms along the diagonal are zero, i.e. if the trace 
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is zero, the whole variance matrix must also be zero [because the diagonal elements are 
2

1 , 
2

2 , 

etc., and the off-diagonal terms are 1,2 1 2   , 2,1 1 2    etc., where 1,2  is the correlation 

between 1ŵ  and 2ŵ ].  Therefore the trace is a very simple way to measure the size of a variance 

matrix. If we minimize the trace of the matrix 
 n n

P , we minimize the sum of the diagonal 

elements.  The diagonal elements of 
 n n

P  are variances of the individual elements of the vector 

ŵ .  By minimizing the diagonal elements, it may seem that one is ignoring the covariance terms.  

But this is not really the case, because the covariance terms are proportional to the square root of 

the individual variances.  Kalman‘s approach was to set the term k so to minimize the trace of the 

posterior uncertainty.  Multiplying out the terms in Eq. (4.39) and then finding their trace results 

in the following:  

 

       

 

1 1 1( ) ( ) ( ) ( )

1( ) ( ) ( ) 2 ( )

n n n n n n n nn n T n n T

n nn n T n n T

tr P tr P tr P tr P

tr P 

  



       
         

       

  
   

  

x k k x

k x x k

 (4.40) 

The trace is a linear operator with some nice properties that we can use to simplify Eq. (4.40). For 

example, ( ) ( )Ttr A tr A . Therefore:  

 

     

 

1 1( ) ( )

1( ) ( ) ( ) 2 ( )

2
n n n n n nn n T

n nn n T n n T

tr P tr P tr P

tr P 

 



     
      

     

  
   

  

k x

k x x k

 (4.41) 

Noting that the term 
 1( ) ( ) 2n nn T nP 


x x  is a scalar quantity and that      tr aA a tr A , we 

have:  

 

     

 

1 1( ) ( )

1( ) ( ) 2 ( ) ( )

2
n n n n n nn n T

n nn T n n n T

tr P tr P tr P

P tr

 



     
      

     

        

k x

x x k k

 (4.42) 

One last important step can be taken by observing that the trace of the external product of two 

vectors (a column vector multiplying a row vector) is simply the dot product of the same vectors. 

Noting that the second and third terms of Eq. (4.42) contain traces of such external products, we 

can further simplify the expression: 
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     

 

1 1( ) ( )

1( ) ( ) 2 ( ) ( )

2
n n n n n nn T n

n nn T n n T n

tr P tr P P

P 

 



   
    

   

 
  
 

k x

x x k k

 (4.43) 

To minimize this expression, we find its derivative with respect to k.  We have: 

 
       1 1( ) ( ) ( ) 2 ( )

( )
2 2

n n n n n nn n T n n

n

d
tr P P P

d


    
     

   
x x x k

k
 (4.44) 

We set Eq. (4.44) equal to zero and solve for k, resulting in:  

 
 

 

1
( ) ( )

1( ) ( ) 2

n n
n n

n nn T n

P

P 





 

 
 

k x

x x

 (4.45) 

Because the second derivative of Eq. (4.43) is positive definite: 

 
   

2
1( ) ( ) 22

n n n nn T n

T

d
tr P P

d


   
   

   
x x

kk
 (4.46) 

the expression in Eq. (4.45) corresponds to a minimum. 

 

Note that the measurement uncertainty as expressed by the variance of the output is: 

       1 1( ) ( ) ( ) ( ) 2var var
n n T n nn n n T ny P 

 
   w x x x  (4.47) 

Therefore, the optimum sensitivity to prediction error, or Kalman gain, is a ratio between our 

prior uncertainty on the parameter that we are trying to estimate (numerator of Eq. 4.45), and our 

measurement uncertainty (the denominator).  If we are uncertain about what we know (numerator 

is ‗large‘ relative to the denominator), we should learn a lot from the prediction error.  If we are 

uncertain about our measurement (denominator is large relative to the numerator), we should 

ignore the prediction error.  [You can perhaps already guess that the Kalman gain formula in Eq. 

(35) is a very useful model of biological learning, which is something that we will explore in 

detail in the next chapter.] 
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Our final step is to formulate the posterior uncertainty, i.e., the variance of  
 n n

w .  We insert Eq. 

(4.45) into Eq. (4.39), and after a bit of simplification
1
 we arrive at the posterior uncertainty:  

 
     1( ) ( )n n n nn n TP I P


 k x  (4.48) 

Since the term ( ) ( )n n T
k x is positive definite, Eq. (4.48) implies that typically, our uncertainty 

declines as we make more observations.   

 

In Fig. 4.14 we have summarized the problem that we just solved.  We begin with the assumption 

that there was a hidden variable w  that linearly interacts with a known quantity ( )n
x  on each 

trial to produce the measurement ( )ny .  To estimate w , we have a prior estimate 
 10

ŵ  and prior 

uncertainty 
 10

P .  We compute (1)
k  using Eq. (4.45) and the posterior uncertainty using Eq. 

(4.48) and then update our estimate using the prediction error (Eq. 4.35).  Because we assume that 

the variable w  did not change from trial to trial, we compute the prior estimate for the next trial 

by simply setting it to the equal to the posterior estimate of the last trial:  

 
   

   

1

1

ˆ ˆ
n n n n

n n n n
P P









w w
 (4.49) 

What if we believe that the variable w  will not stay constant from trial to trial?  For example, in 

Fig. 4.15 we have assumed that w  changes from trial to trial.  This change is simply governed by 

a matrix A (assumed to be known), and random noise wε .  Now our generative model (that is, the 

model that we assume is responsible for generating our data) becomes:  

                                                 
1
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w w ε ε
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 (4.50) 

In Eq. (4.50), the noise wε  in the state update equation reflects our uncertainty about how w  

might change from trial to trial.  The effect of this assumption is to alter how we project our 

estimates ŵ  from the posterior estimate of one trial to the prior estimate of the next trial:  

 

   

   

1

1

ˆ ˆ
n n n n

n n n n T

A

P AP A Q







 

w w
 (4.51) 

The algorithm for solving this version of our problem is summarized in Fig. 4.15. 

 

4.8 Combining predictions with delayed measurements 

 

We now have an algorithm to continuously combine our prior predictions with observations, form 

posterior beliefs, and then form predictions for the future observations.  We have the tools in 

place to test a simple prediction of our framework: when the brain estimates a value but this value 

differs from a measured value, the rate at which belief is corrected and converges onto the 

measured value will depend on the uncertainty of the predictions - the higher the certainty of 

prediction, the slower the convergence.  In another words, the more confident you are about your 

predictions, the more evidence you will need to change your mind. 

 

Jun Izawa and Shadmehr (Izawa and Shadmehr, 2008) tested this idea by having people move a 

handheld LED to the center of a target (Fig. 4.16A).  People could view the handheld LED at all 

times, but the position of the target was made uncertain by displaying it as a ‗blob‘ (a display in 

which pixel intensity was described by a Gaussian).  This noise affected the certainty with which 

the subject could estimate the target position.  For example, in trials in which the target‘s position 

was certain, reaction time (time to start the reach) was shorter and endpoint variance was small.  

In a fraction of the trials, as the movement was unfolding the target changed position by a small 

amount.  When it changed position, the blob‘s characteristics also changed (e.g., the distribution 

that describes the blob became tighter, i.e., easier to estimate its center).  According to the 

framework presented earlier, the brain‘s belief about target position could not change 

instantaneously to the new position reported by the sensory system.  Rather, the rate at which the 

belief would converge to this new position should depend on the uncertainty of the prior belief, 

controlled by the characteristics of the 1
st
 target.  For example, if the first target had low 
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uncertainty but the second target has medium uncertainty, the rate of change in hand position 

should be slow.  However, if the first target had high uncertainty, the rate of change in hand 

position toward the same second target should be fast. 

 

One can describe the estimation problem with the generative model shown in Fig. 4.16B.  The 

states that we wish to estimate include position of the target, and position and velocity of the 

handheld LED, all represented by vector x .  Our observation y  is a noisy, time delayed version 

of these states.  With our motor commands u  to the arm we manipulate the position of the 

handheld LED.  The state update equation becomes: 

 
( 1) ( ) ( ) ( )k k k kA B    x x u  (4.52) 

To represent the fact that our observation is a delayed version of the states, a simple technique is 

to extend the state vector by its copies.  Suppose that an event at time step k was sensed by the 

first stage of sensory processing and then transmitted to the next stage at time k  , where in 

this case 10  ms.  This information continues to propagate and becomes ‗observable‘ with a 

delay of  . Thus, we can represent the delay by first extending the state vector 

( ) ( ) ( ) ( ) ( )

0 2, , , ,
T

k k k k k

e   
   x x x x x  and then allowing the system to observe only the most delayed 

state 
( )k

x .   The sparse matrix C takes care of this last step: 

 

( 1) ( ) ( ) ( )

( ) ( ) ( )

k k k k

e e e e

k k k

e

A B

C





   

 

x x u

y x
 (4.53) 

The basic prediction of this model is that when our sensory system reports that some   time ago 

the target moved to a new position, our estimate of that position does not change immediately to 

this new position.  Rather, our belief converges to the observed position with a rate that depends 

on our uncertainty about our current estimate.  A simulation that shows this idea is provided in 

Fig. 4.16C.  When the 1
st
 target is displayed, uncertainty about its position rapidly declines.  The 

rate of decline is fastest for the target with the smallest variance (blob variance is S, M, or L).  If 

we set an arbitrary threshold on our uncertainty, we can see that crossing this threshold is earlier 

for the small variance target, potentially explaining the faster reaction time.  As the movement 

unfolds, the target jumps to a new location.  If the 2
nd

 target has a larger variance, uncertainty will 

increase after a delay period   (for example, condition S-M or M-L).  Let us compare the S-M 

condition with the L-M condition.  Reaction to the target jump is most influenced by the prior 

uncertainty at the time of the target jump.  The S-M condition has a low uncertainty when one 

senses the target jump, and therefore a small Kalman gain.  The L-M condition has a high 
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uncertainty and a larger Kalman gain.  The large Kalman gain will produce a rapid reaction to the 

information regarding the changed target position.  This is shown in the simulated hand 

acceleration traces in Fig. 4.16D.  Indeed, when the 1
st
 target position had a small uncertainty and 

the 2
nd

 target had medium uncertainty (S-M condition, Fig. 4.16D typical subject), people 

corrected the handheld LED‘s trajectory gradually toward the 2
nd

 target. However, if the 1
st
 

target‘s uncertainty was large, reaction to that same medium uncertainty 2
nd

 target (L-M 

condition, Fig. 4.16D) was quite strong: people corrected the hand path vigorously.   

 

4.9 Hiking in the woods in an estimation framework 

 

Let us now return to the problem of combining multiple sources of information about a hidden 

variable--the hiking in the woods problem--and recast it in the Kalman framework.  Our objective 

is to show that the Kalman gain is precisely the weights in Eq. (4.9) that we earlier assigned to the 

two devices.   That is, when our only source of information is from our observation, and we have 

no prior beliefs, then the Kalman gain is the maximum likelihood estimate. 

 

A graphical representation of the generative model for the hiking in the woods problem is shown 

in Fig. 4.17.  The hidden variable x  is observed via two independent measurements ay  and by .  

Our generative model takes the form:    

 
 

 

( 1) ( ) ( )
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         ,

         ,

n n n

x x

n n n

y y

A N Q

C N R

  

 

x x ε ε 0

y x ε ε 0
 (4.54) 

We begin with a prior estimate 
 10

x  and our uncertainty 
 10

P .  The general form of the Kalman 

gain and posterior uncertainty is:  

 

    
     

1
1 1( )

1( )

n n n nn T T

n n n nn

P C CP C R

P I C P


 



 

 

k

k

 (4.55) 

Suppose that we have no idea where we are, i.e., 
 10

P  .  In this case, we cannot compute the 

Kalman gain from Eq. (4.55).  However, we can proceed by first computing the posterior estimate 

(second line in Eq. 4.55) in terms of the prior estimate, and then rewrite the Kalman gain (first 

line in Eq. 4.55) in terms of the posterior rather than prior uncertainty.  We begin by expressing 

the posterior uncertainty in terms of the prior:  
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We can simplify the second line of Eq. (4.56) by using the matrix inversion lemma.  This lemma 

states that:  

    
1 1

1 1 1 1 1T T TZ XY X Z Z X Y X Z X X Z
 

         (4.57) 

Let us set 
 11 n n

Z P
  , TX C , and Y R .  We can rewrite the second line in Eq. (4.56) 

as:  

 
   

1
1 1 1 1n n T TP Z Z X Y X Z X X Z


        (4.58) 

Therefore we have:  

 
     
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which we can simplify to:  

 
   

1 1
1 1n n n n TP P C R C

 
    

    
   

 (4.59) 

Eq. (4.59) explains that if our prior uncertainty is infinite, then the inverse of our posterior 

uncertainty is simply 1TC R C .  Now, let us express the Kalman gain in terms of the posterior 

uncertainty.  We begin by multiplying both sides of the first line in Eq. 4.55 by the term in the 

parenthesis:  

 
   1 1( ) n n n nn T TCP C R P C

  
  

 
k  (4.60) 

We next multiply both sides of the above expression by 1R  and then after a little rearrangement 

arrive at:  
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k
 (4.61) 

The term in the parenthesis in the above expression is simply the posterior uncertainty, allowing 

us to express the Kalman gain for the system of Eq. (4.54) in this way: 

 
 ( ) 1n nn TP C Rk . (4.62) 
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If we insert our prior 
 10

P   into Eq. (4.59), our posterior becomes 

 
   

111 1TP C R C


  (4.63) 

The Kalman gain becomes:  

  
1

(1) 1 1T TC R C C R


 k  (4.64) 

Our estimate of the hidden variable (our position) is:  

 
     11 10 10(1) (1) C

 
   

 
x x k y x  (4.65)  

Assuming that our prior 
 10

x  was zero, the above expression reduces to:  

 
   

111 1 1 (1)T TC R C C R


 x y  (4.66) 

This expression is our maximum likelihood estimate in Eq. (4.8).  Furthermore, the variance of 

our estimate, as expressed in Eq. (4.63), is the variance of our maximum likelihood estimate in 

Eq. (4.11).  Therefore, if we are naïve in the sense that we have no prior knowledge about the 

state that we wish to estimate, then a weighted combination of the two sources of information is 

the optimal solution.  On the other hand, if we also have a prior, e.g., we have hiked this path 

before and have some idea of where we might be, then the Kalman framework gives us the tools 

to weigh in this additional piece of information. 

 

From a practical point of view, a useful result that we derived in this section is with regard to the 

prior uncertainty.  Often when we try to estimate something we are at a loss as to what the prior 

uncertainty should be.  If we are completely naïve, then Eq. (4.63) tells us what the uncertainty 

will be after the first data point is observed.  A common technique is to set the prior uncertainty to 

this value.  

  

4.10 Signal dependent noise 

 

Thus far we have considered processes that have additive Gaussian noise.  With this kind of 

noise, the variance of the variable that we are observing is independent of its mean.  If you think 

about it, this is a bit odd: the signal varies by some amount and the variance is the same whether 

the signal is small or large.  Biological systems seem to have a different kind of noise: variance 

varies with the size of the signal.  For example, Richard Schmidt and colleagues (Schmidt et al., 

1979) asked volunteers to make rapid reaching movements to a target and measured the 
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variability of the endpoint (Fig. 4.18).  They found that for a given target distance, the smaller 

durations (i.e., faster movements) were associated with larger endpoint variance.  As movement 

duration decreased, the force required to make that movement would of course increase.  Richard 

Schmidt hypothesized that the noise in a muscle was likely dependent on the force developed by 

the muscle (Schmidt, 1991).  He wrote: ―Movement‘s inaccuracy increases as movement time 

decreases, primarily because of the increased noise involved in the stronger muscle contractions.‖  

That is, noise associated with the motor commands was likely an increasing function of the 

magnitude of those commands. 

 

We can examine the noise properties of muscles in an experiment in which volunteers produced a 

force by pushing with their thumb on a transducer while viewing the resulting force on a video 

monitor.  Kelvin Jones, Antonia Hamilton, and Daniel Wolpert (2002) measured this force and 

focused on the standard deviation of this variable during a 4 sec period in which the visual 

feedback was eliminated (shown in the second column of Fig. 4.19A).  They found that the 

standard deviation of the force grew roughly linearly as a function of mean force (Fig. 4.19B).  

The change in the standard deviation of force may have been because of the transduction of 

neural signal into force in the muscle, or from the neural signal itself.  To resolve this question, 

Jones et al. electrically stimulated the thumb flexor muscle (shown in the third and fourth column 

of Fig. 4.19A).  They did not observe an increase in variance with increased stimulation strength.  

This result suggested that the noise originated from the neural motor-commands, and was not due 

to the muscle and how it produced force.   

 

The term signal dependent noise refers to a process in which the standard deviation of the noise 

depends on the mean of the signal.  For example, the force produced by muscle i  may be related 

to its input iu  via a noise process that has the following form:  

    1            0,1i i i i if u c N    (4.67)  

The term ic  indicates the rate at which the noise grows with the signal.  That is, the variance of 

force increases as a function of the signal iu :  

   2 2var i i if c u  (4.68)  

And so the standard deviation of force increases linearly with iu , with slope ic .   
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How would we estimate the state of a system if it suffers from signal dependent noise?  The 

Kalman framework that we have been using will need to be modified.  Suppose that we have a 

system in which we produce motor commands u  (e.g., force in the muscles), and this affects the 

state of our system x  (e.g., position, velocity, of our body), resulting in sensory feedback y  (e.g., 

proprioception, vision).  Suppose that the system is of the form:  
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 (4.69) 

where xε  and yε  are zero mean Gaussian noise: 
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and uε  and sε  are zero mean signal dependent noise terms, meaning that noise depends on the 

motor commands u , and state x , respectively:  
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 (4.71) 

The signal dependent motor noise uε  affects the state x  and the signal dependent sensory noise 

sε  affects the observation y .  It is useful to express the signal dependent noise terms as a linear 

function of u  and x .  To do so, we can define:  
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 (4.72) 

and so we have:  
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In Eq. (4.73), m  is the size of the vector u  and n is the size of the vector x .  And so we can re-

write the system equations as:  

 

( )( 1) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

kk k k k k
x i ii

kk k k k
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 (4.74) 

On trial k , we have a prior belief 
( 1)

ˆ
k k

x , with uncertainty 
( 1)k k

P


 , and we make an 

observation ( )k
y .  To update our belief, we have:  

  ( ) ( 1) ( 1)( ) ( )ˆ ˆ ˆ
k k k k k kk kK H

 
  x x y x  (4.75) 

How should we set  ( )kK ?  As before, we will set it in such a way as to minimize the trace of the 

posterior uncertainty 
( )k k

P .  However, when we do this, we will see that the Kalman gain will 

now depend on both the state x  and the motor commands u . 

 

Re-writing Eq. (4.75), we have:  
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 (4.76) 

The variance of our posterior estimate is:  
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Eq. (4.77) can be written as:  
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The derivative of the trace of the above equation with respect to ( )kK  is:  

 

 

( ) ( 1)

( )

( 1)( ) ( ) ( )

2

2

k k k k T

k

k kk T k k T T T
y i ii

d
tr P P H

dK

K HP H Q HD D H





   
  

   x x

 (4.79) 

Setting the above expression to zero and solving for ( )kK  we have:  

  
1

( 1) ( 1)( ) ( ) ( )k k k kk T T k k T T T
y i ii

K P H HP H Q HD D H


 
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Notice that because of signal dependent noise, the Kalman gain is a function of the state x .  (In 

practice, we replace the term ( ) ( )k k T
x x  in Eq. (4.80) with our estimate ( ) ( )k k TE  

 
x x ).  In 

fact, when we compute the uncertainties, we see that the Kalman gain is also a function of the 

motor commands.  Substitute the expression in Eq. (4.80) in Eq. (4.78), and we have:  

  1 ( )k k k k T k TP P I H K


   (4.81) 

The prior uncertainty in step 1k   becomes:  

 
( 1 ) ( ) ( ) ( )k k k k T k k T T T

x i ii
P AP A Q BC C B


   u u  (4.82) 

Therefore, the state uncertainty increases with the size of the motor commands, and the Kalman 

gain decreases with the size of the state. 

 

An implication of our derivation is that if we are pushing a large mass (producing relatively large 

motor commands), then we will have a larger uncertainty regarding the consequences of these 

commands (as compared to pushing a small mass with a smaller amount of force).  As a result, 

when we are producing large forces we should rely more on the sensory system and our 

observations and less on our predictions. 

 

Summary 

 

As our brain plans and generates motor commands, it also predicts the sensory consequences and 

acts on the predicted consequences.  One clear advantage of making sensory predictions is that 

the brain does not have to wait for the sensory measurements to know that it needs to intervene.  

The delay in sensory measurements is long enough that it can cause stability problems.  Relying 

on predictions, rather than delayed measurements, allows one to over-come this delay.   A second 

advantage of making sensory predictions is that the brain can combine its predictions with the 

sensory measurements (when they arrive).  The combination of the two streams of information 

would allow the brain to sense the world better than if it only had the sensory information stream.  

That is, we are able to ‗see‘ the stimulus better because we have two sources of information about 

it, rather than just one.  These two streams also allow the brain to separate the sensory data that is 

a result of self-generated motion from data that is due to external events.  If the process of state 

estimation is damaged due to disease, then the result may be symptoms of delusions, i.e., an 

inability to assign agency. 
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To combine two streams of information, one needs to apply a weight to each stream.  In principle, 

the weight should be higher for the more reliable information source.  State estimation theory 

provides a framework in which to describe this problem.  In this framework, the objective is to 

estimate the state of our body or the world around us from our sensory measurements.  This 

problem has two components.  The first is associated with learning to accurately predict the 

future, i.e., what the sensory measurements should be – this is our prior estimate of state.  The 

second is associated with optimally combining the measured quantities with the predicted one to 

form a posterior estimate of state.  Kalman first solved this problem by finding a posterior 

estimate that for a linear system with Gaussian noise produced a posterior estimate that had the 

minimum variance. 
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Figure 4.1.  Subject was instructed to pull on a knob that was fixed on a rigid wall.  A)  EMG 

recordings from arm and leg muscles.  Before biceps is activated, the brain activates the leg 

muscles to stabilize the lower body and prevent sway due to the anticipated pulling force on the 

upper body.  B) When a rigid bar is placed on the upper body, the leg muscles are not activated 

when biceps is activated.  (From (Cordo and Nashner, 1982) with permission). 

 

Figure 4.2.  Effect of eye movement on the memory of a visual stimulus.  In the top panel, the 

filled circle represents the fixation point, the asterisk indicates the location of the visual stimulus, 

and the dashed circle indicates the receptive field a cell in the LIP region of the parietal cortex.  

A) Discharge to the onset and offset of a visual stimulus in the cell‘s receptive field.  

Abbreviations: H. eye, horizontal eye position; Stim, stimulus; V. eye, vertical eye position.  B) 

Discharge during the time period in which a saccade brings the stimulus into the cell‘s receptive 

field.  The cell‘s discharge increased before the saccade brought the stimulus into the cell‘s 

receptive field.  (From (Duhamel et al., 1992) with permission). 

 

Figure 4.3.  Subject reached to the location of a visual stimulus.  A) In the Control condition, 

subject fixated the target stimulus for a brief period of time, the target disappeared, and after a 

delay period a reach was made.  In the Static condition, subject fixated a secondary stimulus 

when the target stimulus appeared to one side.  In the Remap condition, the subject fixated the 

target stimulus, then made a saccade to a secondary stimulus (at which point the target stimulus 

was erased).  In the Combined condition, the subject fixated the target stimulus, made a saccade 

to a secondary stimulus, and then during the delay period was again shown the target stimulus 

after completion of the saccade.  B) The standard deviation of the reach, i.e., a measure of 

uncertainty about the location of the target stimulus.  Optimal refers to a weighted combination of 

static and remap conditions.  (From (Vaziri et al., 2006) with permission). 

 

Figure 4.4.  Motor commands change the states of our body and the environment around us.  

These states are transduced by our sensory system and become the measured sensory 

consequences of our motor commands.  As we generate motor commands, our brain also predicts 

the sensory consequences via an internal model that is called a ‗forward model‘.  By combining 

the predicted and measured sensory consequences, we form a belief about the states of our body 

and the environment.  This belief is a reflection of both our predictions and our observations. 
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Figure 4.5.  Subject looked at a moving cursor while a group of dots appeared on the screen for 

300ms.  In some trials the dots would remain still (A) while in other trials they would move 

together left or right with a constant speed (B).  Subject indicated the direction of motion of the 

dots.  From this result, the authors estimated the speed of subjective stationarity, i.e., the speed of 

dots for which the subject perceived them to be stationary.  C) The unfilled circles represent 

performance of control subjects.  Regardless of the speed of the cursor, they perceived the dots to 

be stationary only if their speed was near zero.  The filled triangles represent performance of 

subject RW.  As the speed of the cursor increased, RW perceived the dots to be stationary if their 

speed was near the speed of the cursor.  (From (Haarmeier et al., 1997) with permission). 

 

Figure 4.6.  Disorders of agency in schizophrenia relate to an inability to compensate for sensory 

consequences of self-generated motor commands.  In a paradigm similar to that shown in Fig. 

4.5, volunteers estimated whether during motion of a cursor the background moved to the right or 

left.  By varying the background speed, at each cursor speed the experimenters estimated the 

speed of perceptual stationarity, i.e., the speed of background motion for which the subject saw 

the background to be stationary.  They then computed a compensation index as the difference 

between speed of eye movement and speed of background when perceived to be stationary, 

divided by speed of eye movement.  The subset of schizophrenic patients who had delusional 

symptoms showed a greater deficit than control in their ability to compensate for sensory 

consequences of self-generated motor commands.  (From (Lindner et al., 2005) with permission.) 

 

Figure 4.7. Response to a visual stimulus depends on both the noise in the stimulus and the 

brain‘s predictions about that stimulus. A) In a reaching task, feedback about the current position 

of the finger was provided for only a brief time during the movement.  As the finger moved from 

the starting circle, cursor (indicating current finger position) was extinguished.  Halfway to the 

target, feedback was briefly provided.  The position of this feedback was displaced from actual 

finger position by a random amount, with a mean of 1 cm.  The quality of the feedback was 

controlled: the feedback was either clear ( 0 ), or with different degrees of blur ( M  and L ), or 

withheld ( ).  The paths illustrate typical trajectories for a displacement of 2 cm.  B) Top sub-

plot: For 1000 trials, subjects trained with the illustrated distribution of lateral shifts, i.e., a 

Gaussian with a mean of 1 cm.  This constitutes the prior probability of the displacement.  Middle 

sub-plot: A diagram of various probability distributions associated with the current measurement.  

This distribution is shown for the clear and the two blurred feedback conditions for a trial in 
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which the true shift was 2 cm.  Bottom sub-plot: The estimate of displacement for an optimal 

observer that combines the prior with the evidence.  C) The lateral deviation of the cursor at the 

end of the reach as a function of the imposed lateral shift for a typical subject.  The horizontal line 

at 0 would indicate full compensation to the observed error.  The dash line would indicate 

complete denial of the observed error.  The solid line is the Bayesian model with the level of 

uncertainty fitted to the data.  For example, when the feedback was clear, i.e., 0 , the subject 

compensated almost fully, nearly hitting the target in all conditions.  When the feedback was 

uncertain, i.e., L , the subject missed the target in most conditions.  D) The inferred priors for 

each subject and condition.  The true distribution is shown in part B. (From (Kording and 

Wolpert, 2004) with permission.) 

 

Figure 4.8.  Device a and device b provide independent estimates of a hidden variable (position 

on a map).  Each device has a Gaussian noise property with a covariance  1, 1; 1,3aR     and  

 1,1;1,3bR  .  The ellipses describe the region centered on the mean of the distribution that 

contains 10%, 25%, and 50% of the data under the distribution.  The maximum likelihood 

estimate of the hidden variable is marked by the distribution at the center. 

 

Figure 4.9.  Maximum likelihood integration of two sensory modalities.  Visually and haptically 

specified heights of an object differ by  .  On the left columns, the visual and haptic variances 

are equal.  The mean of the combined probability density is equal to the mean of the visual and 

haptic densities.  The variance of the combined density is half of the visual (or haptic) density.  If 

the judgment of relative height is based on the combined density, the psychometric function is the 

cumulative Gaussian (bottom left) with the point of subjective equality (PSE) equal to the average 

of the visual and haptic heights.  In the right column of figures, the noise in the haptic sensor is 

four times the visual noise.  The psychometric function is shifted so that the PSE is closer to the 

visual height.  (From (Ernst and Banks, 2002) with permission.) 

 

Figure 4.10.  Procedure for determining the noise in the haptic sensory modality.  A. Two objects 

that differ in size by amount 3   are presented and a subject holds each object to estimate its 

size.  The estimate of size for each object,  2

1 1, hy N    and  2

2 1 , hy N    are shown 

(here, we assumed 
2 1h  ).  B. The estimate of the difference between the two objects is 
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2 1
ˆ y y    and this random variable is a Gaussian with the following distribution: 

 2ˆ ,2 hN   .  The probability of picking the second object as being larger,  ˆPr 0  , is 

the integral of  ˆp   from zero to infinity.  C. The probability  ˆPr 0   rises faster as a 

function of   when sensory noise 
2

h  is small.  When 2 h  ,  ˆPr 0 0.84   , as 

indicated by the dashed line. 

 

Figure 4.11.  Experimental data from an experiment on haptic and visual sensory integration.  A. 

Within-modality experimental results.  Proportion of trials in which the second stimulus was 

perceived as taller than the standard stimulus is plotted against the height of the second stimulus.  

Four noise levels were considered for the visual condition.  B. Visual-haptic discrimination.  C. 

Predicted and experimental weights and PSEs.  The shaded area represented predicted weights 

from within-modality discrimination.  The height of the shaded area represents predicted errors 

given the standard errors of within modality discrimination.  D. Combined and within modality 

discrimination thresholds.  Thresholds are from the psychometric function in parts A and B.  

Dashed line represents haptic-alone threshold.  (From (Ernst and Banks, 2002) with permission.) 

 

Figure 4.12.  Samples from three Gaussian distributions. 

 

Figure 4.13.  Distribution of parameter w in a linear regression problem.  In all three cases the 

mean value of the distribution is [0.5, 0.5], but the covariance of the distribution depends on the 

specific data that were used to form the estimate.   

 

Figure 4.14.  Estimation of a hidden variable via Kalman filter.  In this example, the hidden state 

w is assumed to be invariant.  The open circles indicate hidden variables.  The gray circles 

indicate observed variables.   

 

Figure 4.15.  Estimation of a hidden variable via Kalman filter.  In this example, the hidden state 

w is assumed to change from trial to trial.   

 

Figure 4.16.  The rate at which belief converges onto the measured value depends on the 

uncertainty of the prior belief.  A) Subjects reached to a blob-like target, with visual 

characteristics that was described by a Gaussian of small, medium, or large variance.  The 
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objective was to place the handheld LED in the center of the target.  B) A generative model 

describing the relationship between input (motor commands), state (position of the target and 

hand), and observation (delayed measurement of state).  C) Model predictions.  Uncertainty of 

the state of the target as a function of time.  Movement starts earlier for a small variance target.  

When the target jumps, the prior uncertainty is specified by the 1
st
 target and uncertainty 

converges to the variance of the 2
nd

 target.  D) Example data.  When the target jumped, the hand 

path was corrected to the new target.  However, for a given second target (medium uncertainty 

here), the rate of correction was largest when the 1
st
 target had the largest uncertainty. (From 

(Izawa and Shadmehr, 2008) with permission.) 

 

Figure 4.17.  A graphical representation of the generative model for the hiking in the woods 

problem.  In this problem, we have two sensors ay  and by  that provide us with independent 

measures of a hidden state x . 

 

Figure 4.18.  Endpoint variability of rapid aiming movements (shown as standard deviation of the 

endpoint position) as a function of movement duration and amplitude.  Reduced duration 

increases endpoint variability.  (Data from (Schmidt et al., 1979)). 

 

Figure 4.19.  The standard deviation of noise grows with mean force in an isometric task. 

Participants produced a given force with their thumb flexors. In one condition (labeled 

―voluntary‖), the participants generated the force, whereas in another condition (labeled 

―NMES‖) the experimenters stimulated the muscles artificially to produce force. To guide force 

production, the participants viewed a cursor that displayed thumb force, but the experimenters 

analyzed the data during a 4-s period in which this feedback had disappeared. A. Force produced 

by a typical participant. The period without visual feedback is marked by the horizontal bar in the 

1st and 3rd columns (top right) and is expanded in the 2nd and 4th columns. B. When participants 

generated force, noise (measured as the standard deviation) increased linearly with force 

magnitude (with a slope of ~1. Abbreviations: NMES, neuromuscular electrical stimulation; 

MVC, maximum voluntary contraction. (From Jones et al. (2002) with permission.) 
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