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ABSTRACT 

We report  on a simple technique that characterizes the effect of process parameters (i.e., pressure, RF power, and gas 
mixture) on the optical emission and mass spectra of CHFJO2 plasma. This technique is sensitive to changes in chamber  
contamination levels (e.g., formation of  Teflon-like thin-film), and appears to be a promising tool for real-time monitoring 
and control of reactive ion etching. Through principal component  analysis, we observe that 99% of the variance in the 
more than 1100 optical and mass spectra channels are accounted for by the first four principal components  of each sensor. 
Projection of the mass spectrum on its principal components suggests a strong linear relationship with respect to chamber  
pressure. This representation also shows that the effect of changes in thin-film levels, gas mixture, and RF power on the 
mass spectrum is complicated, but predictable. To model the nonlinear relationship between these process parameters 
and the principal component  projections, a feedforward, multi-layered neural network is trained and is shown to be able 
to predict  all process parameters from either the mass or the optical spectrum. The projections of the optical emission 
spectrum on its principal components  suggest that optical emission spectroscopy is much more sensitive to changes in RF 
power than the mass spectrum, as measured by the residual gas analyzer. Model performance can be significantly im- 
proved if both the optical and mass spectrum projections are used (so called sensor fusion). Our analysis indicates that ac- 
curate estimates of process parameters and chamber conditions can be made with relatively simple neural network mod- 
els which fuse the principal components  of the measured optical emission and mass spectra. 

In the reactive ion etching (RIE) process, plasma charac- 
teristics depend on many parameters; some of these pa- 
rameter values are set by the tool operator, e.g., chamber 
pressure, RF power, and gas flow, while others are internal 
to the condition of the chamber, e.g., thin-film thickness on 
the chamber  walls, or the amount  of material etched. 
Plasma characteristics can be observed using in situ meas- 
urements,  e.g., via optical emission spectroscopy (OES) or 
residual gas analysis (RGA). How these measurements  can 
be used to estimate the process parameters is the question 
that this paper is concerned with. 

Currently, an etch process is arrived at through experi- 
ments which try to find the particular process parameters 
that result in the desired etch selectivity and profile. These 
conditions translate into a recipe which typically defines 
the set-points for gas flow, chamber  pressure, RF power, 
and etching time. But since a chamber is usually stressed 
under high throughput,  the chamber 's  internal parameters 
will vary even though the input parameters (as set by the 
operator) have not changed. This leads to results that are 
difficult to reproduce. The situation is further complicated 
by the fact that an unsuccessful etch may be caused by a 
mismatch between the process settings and the conditions 
actually produced by the machine's  hardware, which is the 
case when there is, for example, a malfunctioning mass 
flow controller. 

Research on model ing the relationship between process 
set-points and the desired etch profile (1-3) has greatly im- 
proved our understanding of the basic physical and chemi- 
cal mechanisms in the RIE process. These models typi- 
cally try to account for the plasma chemical reactions, the 
ionization and motion in an electric field, and the surface 
reaction kinetics (4). For monitoring and control applica- 
tion, however, it is unlikely that such models can be 
readily applied, since the particular reaction rates and 
cross sections are generally unknown. 

Another  approach has been to track the chamber condi- 
tions in situ. The idea here is to monitor the trajectory of 
one or two channels of an OES or RGA for the "perfect 
chamber," and then try to track that trajectory during the 
manufacturing process. Various artificial intelligence tools 
have been devised that, through rule-based expert  sys- 
tems, can detect significant deviation from the desired 

trajectory (5). However, we know only of the work of Bol- 
ker et al. (6) where an in si tu measurement,  the RGA, was 
correlated to the process set-points. 

In the present work we use in situ measurements in 
order to identify how the observed state of the plasma de- 
pends on each input process parameter (e.g. pressure, 
power, and/or mass flow/composition of gas). If  it can be 
shown that the effect of each process parameter on the ob- 
served state of the plasma is uniquely identifiable, then 
discrepencies between the current and desired state of the 
plasma can be attributed to a particular parameter--facili- 
tating monitoring and diagnosis. Furthermore,  the system 
should be able to alert the operator to conditions that can- 
not be overcome by manipulation of the input parameters, 
such as leaks in the chamber, or significant formation of 
contaminations (e.g., fluorocarbon, Teflon-like film) inside 
the chamber  (7, 8). 

This report describes our effort for identifying the ef- 
fects of the process parameters on the in si tu measure- 
ments of OES and RGA. Using principal component  anal- 
ysis (PGA), we show that changes in chamber pressure, RF 
power, gas mixture, and contamination levels result in 
complex but predictable clustering patterns when the 
OES and RGA measurements  are projected onto their first 
few principal components.  Our results indicate that for the 
limited set of experiments  conducted, nearly all of the in- 
formation in the OES and RGA measurements  can be rep- 
resented by these principal components.  This way of rep- 
resenting the in si tu measurements  allows for very 
efficient modeling, since the characteristics of the plasma 
can be represented with only a few variables with almost 
no loss of information. Furthermore,  relationships are 
much easier to visualize due to the significant reduction in 
dimensionality of the data set. 

We explored both linear and nonlinear estimators for 
model ing .the relationship between process parameters 
and these principal component  projections. For the non- 
linear estimator, we use a feed-forward, multi-layered neu- 
ral network. The results reported here suggest that accur- 
ate estimates of process set-points and chamber 
contamination levels can be made with relatively simple 
neural network models, using the principal components  of 
the OES and RGA measurements.  
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Experiments 
In the present work, we are concerned with the follow- 

ing problem: A mixture  of CHFjO2 is vertically disso- 
ciated and ionized at a certain chamber pressure and RF 
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Table I. Experiment numbers and the corresponding process parameter values. 

Exp. Power Mix Press. Thin Exp. Power Mix Press. Thin 
no. watts % 02 mTorr film no. watts % 02 mTorr film 

1 200 3 25 9.4 37 200 3 50 20.2 
2 300 3 25 9.5 38 300 3 50 20.2 
3 350 3 25 9.6 39 350 3 50 20.3 
4 200 9 25 9.8 40 200 9 50 20.5 
5 300 9 25 9.8 41 300 9 50 20.5 
6 350 9 25 9.9 42 350 9 50 20.6 
7 200 15 25 10.0 43 200 15 50 20.6 
8 300 15 25 10.0 44 300 15 50 20.7 
9 350 15 25 10.1 45 350 15 50 20.7 

10 200 3 50 10.2 46 200 3 75 20.9 
11 300 3 50 10.3 47 300 3 75 21.2 
12 350 3 50 10.4 48 350 3 75 21.4 
13 200 9 50 10.5 49 200 9 75 21.8 
14 300 9 50 10.5 50 300 9 75 22.0 
15 350 9 50 10.6 51 350 9 75 22.2 
16 200 15 50 10.7 52 200 15 75 22.4 
17 300 15 50 16.7 53 300 15 75 22.5 
18 350 15 50 10.7 54 350 15 75 22.6 
19 200 3 75 11.0 55 200 3 50 30.0 
20 300 3 75 11.3 56 300 3 50 30.0 
21 350 3 75 11.7 57 350 3 50 30.0 
22 200 9 75 12.0 58 200 9 50 30.2 
23 300 9 75 12.2 59 300 9 50 30.2 
24 350 9 75 12.3 60 350 9 50 30.3 
25 200 15 75 12.6 61 200 15 50 30.4 
26 300 15 75 12.6 62 300 15 50 30.4 
27 350 15 75 12.7 63 350 15 50 30.4 
28 200 3 25 19.3 64 200 3 75 30.5 
29 300 3 25 19.4 65 300 3 75 30.8 
30 350 3 25 19.5 66 350 3 75 31.2 
31 200 9 25 19.7 67 200 9 75 31.7 
32 300 9 25 19.8 68 306 9 75 31.8 
33 350 9 25 19.9 69 350 9 75 32.1 
34 200 15 25 19.9 70 200 15 75 32.4 
35 300 15 25 20.0 71 300 15 75 32.4 
36 350 15 25 20.1 72 350 15 75 32.5 

p o w e r  (no wafe r  is p r e s e n t  in t he  chamber) .  F r o m  the  
m e a s u r e d  opt ical  e m i s s i o n  and mass  spect ra ,  t he  task  is to 
e s t ima te  the  value o f  t h e s e  pa ramete r s ,  as well  as the  
a m o u n t  of  Teflon-l ike th in-f i lm (7, 8) p r e s e n t  on the  surface 
of  t he  c h a m b e r ' s  in te r io r?  Bui ld-up  of  th is  film (here af ter  
r e fe r red  to as thin-fi lm) c h a n g e s  the  charac te r i s t i cs  of  t he  
p lasma,  can  s ignif icant ly  r e d u c e  the  Si e t ch  rate (9-11), and  
in e x t r e m e  cases ,  can  flake off  and  ser ious ly  con t amina t e  
t he  wafer .  

For  the  fo l lowing e x p e r i m e n t s ,  the  RIE reactor  was  a 
13.56 MHz f lexible diode,  wi th  a 40 cm d i ame te r  lower  
e lec t rode  and  a p o w e r  range  f rom 0 to 1000 W. C h a m b e r  
p r e s s u r e  was  con t ro l l ed  by  an au tomat i c  th ro t t le  valve and  
m e a s u r e d  by  an M K S  Barat ron.  The CHFJO2 m i x  was  de- 
t e r m i n e d  by  se t -poin ts  on the  M K S  mass / f low cont ro l le rs  
w i th  a f low range  of  0 to 100 sccm.  The opt ical  emis s ion  of  
the  p l a sm a  was  ana lyzed  us ing  a 512 d iode  array (150 
g roves /mm)  E G + G  P A R C  Mode l  1460, w i th  a dual  pos i t ion  
s t e p p e r  m o t o r  a d j u s t m e n t  on  the  d i f f rac t ion  gra t ing  tha t  
a l lowed for v i ewing  of  emis s ions  f rom 240 to 900 nm.  
D o w n s t r e a m  m a s s  spec t ra  for mas se s  1 to 99 were  t aken  on  
an Inf icon Quad rex  200 RGA. Bo th  the  OES and  RGA 
w e r e  in te r faced  to an  IBM PS/2 Mode l  80 for  eff icient  data  
col lec t ion and  label ing.  An  Inf icon IC6000 Quartz Crystal  
Mic roba lance  (QCM), w i th  the  crysta l  m o u n t e d  on the  
wall, was  u s e d  as an ind ica tor  of  t he  a m o u n t  of  thin-f i lm in 
t he  c h a m b e r  4 (12). 

C h a m b e r  p r e s su re  was  c h a n g e d  f rom 25 to 75 mTor r  by 
i n c r e m e n t s  of  25 mTorr .  Gas flow was  kep t  cons t an t  at 
100 sccm,  and  the  ratio of  CHFJO2 was  c h a n g e d  f rom 

Note that because no wafer was present in the chamber, for any 
given set of process set-points, the plasma's characteristics, and 
therefore the state of the process, did not vary significantly with re- 
spect to time. Although under conditions of high pressure and 
power one can readily observe thin-film build-up over several min- 
utes, which results in a change in the species present in the optical 
and mass spectra, these measures remain essentially stationary for 
a period of a few tens of seconds after the power is applied. We as- 
sumed that the relationship between the in situ measurements and 
the process parameters in stationary. 

4 Thin-film growth is reflected in a lowering of the frequency 
readout of the QCM. Unfortunately, without knowledge of the film 
density, this readout cannot be converted to an absolute measure 
of the thin-film thickness. However, as a relative measure, the QCM 
provides an accurate estimate of the change in thin-film thickness. 

97%/3% to 85%/15% by  i n c r e m e n t s  of  6%. RF  p o w e r  was  set  
at e i ther  200, 300, or 350 W for each  of  the  above  pe rmuta -  
t ions.  To in ten t iona l ly  and  qu ick ly  depos i t  thin-fi lm, we  
se t  t he  i n p u t  p a r a m e t e r s  at 50 mTorr ,  100 s c c m  CHF3, and  
250 W. The  QCM s h o w e d  rap id  bu i ld -up  of  thin-f i lm on  the  
c h a m b e r  walls,  w h i c h  was  a c c o m p a n i e d  by  a d rop  in VDC. 
We r e c o r d e d  t h e  c h a n g e  in the  QCM's output ,  and  r epea t ed  
the  above  set  of  e x p e r i m e n t s  at m e d i u m  and  h igh  levels of  
thin-fi lm. In  Table  I w e ' v e  l i s ted  the  e x p e r i m e n t  n u m b e r s  
and  the  c o r r e s p o n d i n g  p roces s  p a r a m e t e r  values.  

The  R G A  and  OES m e a s u r e m e n t s  w e r e  s to red  for each  
p roces s  se t -point .  We s to red  the  R G A  s p e c t r u m  for masses  
1 to 99, a n d  the  s p e c t r u m  f rom 251.8 to 562.2 n m  for the  
first 510 ch an n e l s  o f  opt ical  emis s ion  (resolut ion of 
0.61 nm), and  f rom 549.2 to 860.9 for  t he  s eco n d  510 chan-  
nels.  A total  o f  72 e x p e r i m e n t s  were  p e r f o r m e d  (see 
Table  I). 

Principal Component Analysis 
Pr inc ipa l  c o m p o n e n t  analysis  enab les  r educ t ion  of  a 

data  set  whi le  re ta in ing  m o s t  of  its variat ion.  The  n e w  set  
o f  var iab les  are cal led the  pr inc ipa l  c o m p o n e n t s  der ived  
f rom l inear  t r a n s f o r m a t i o n s  of  t he  original  ones.  They  are 
s tat is t ical ly unco r r e l a t ed  to each  o the r  and  typical ly  a 
smal l  f rac t ion  of  t h e m  (the first several) con ta in  the  major-  
i ty of  the  var ia t ion  (13). For  the  p r o b l e m  at hand ,  changes  
in the  p ro ce s s  p a r a m e t e r s  resul t  in ch an g es  in the  s ta te  of  
t he  p lasma,  w h i c h  is e s t i m a t e d  by  the  99 var iables  of  the  
m e a s u r e d  mass  s p e c t r u m  and  the  1020 var iables  of  the  
m e a s u r e d  opt ical  emi s s i o n  spec t rum.  By visual  inspec-  
tion, it is p e r h a p s  poss ib le  to cor re la te  pa t t e rns  in par ts  o f  
t h e s e  spec t ra  wi th  ch an g es  in t he  p roces s  pa ramete r s .  But  
b ecau s e  the  n u m b e r  of  r e c o r d e d  var iables  is so large, it is 
very  difficult ,  for example ,  to see t he  effect  of  RF  p o w e r  on 
the  RGA. F u r t h e r m o r e ,  bu i ld ing  a m o d e l  tha t  e s t ima te s  
four  p roces s  p a r a m e t e r s  f rom s o m e  1119 d i f fe ren t  vari- 
ables  w o u l d  be  imprac t ica l  for bo th  eff ic iency and  ac- 
curacy  cons idera t ions .  

By  e m p l o y i n g  pr inc ipa l  c o m p o n e n t  analysis ,  we  h o p e  to 
f ind a smal l  s u b s p a c e  s p a n n e d  by  a set  of  o r thogona l  vec- 
tors  ( the first few p r i n c i p a l c o m p o n e n t s ) ,  w h e r e  projec-  
t ions  of  t he  original  data  can  be  effect ively  s tudied .  I f  t h e s e  
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few uncor re la ted  var iables  r ep roduce  mos t  of  the  var ia t ion 
in all of  the  or iginal  var iables ,  and if  these  var iables  are in- 
t e rpre tab le  (i.e., have  a phys ica l  meaning) ,  t hen  the  PCs 
give an  al ternate,  and m u c h  s imple r  descr ip t ion  of  the  data  
than  the  or iginal  variables.  Our  resul ts  demons t r a t e  that  
this is in fact the  case  for the  RIE  process  descr ibed  in the  
prev ious  section.  

C o m p u t i n g  the  pr inc ipa l  c o m p o n e n t s  amoun t s  to calcu- 
la t ing  the  e igenvec to r s  in descend ing  order  of  the  cova- 
r iance  ma t r ix  o f  t he  var iables  in quest ion.  Le t  y~ = [s~, q~, pi, 
c~] T, r ep resen t  t he  process  pa rame te r  vec to r  for e x p e r i m e n t  
i, where  s is the  R F  power ,  q is the  pe rcen t  02 in the  C H F J  
02 mix ture ,  p is the  c h a m b e r  pressure,  and c is the  thin-  
film con tamina t ion  level  as measu red  by  a quar tz  crystal  
m ic roba l ance  (QCM). Le t  mi =[m h, mi 2 . . . . .  mbg]  w and oi = 
[%, %, . . . ,  %0~0] T, r ep resen t  the  mass  and optical  spectra  
for e x p e r i m e n t  i, respect ively .  The  task  is to bui ld  a m o d e l  
which,  g iven  an obse rva t ion  of  the  state of  the  process,  m~ 
and o~, p roduces  an es t imate  of  the  process ' s  i npu t  and in- 
ternal  parameters ,  y~. Our approach  is to use pr incipal  
c o m p o n e n t  analysis  to find mi and ~ f rom m~ and o~ where  
the  d imens iona l i ty  of  ~ and 6i is m u c h  less than  mi and oi, 
and then  bu i ld  l inear  and non l inear  mode ls  that  descr ibe  y, 
as a func t ion  of  @i and ~i. 

The  ma t r ix  Y = [y~, y ~ , . . . ,  yT~]T is the  set of  process  set- 
points  v is i ted  in the  exper iments .  Matr ices  M = [m~, m~, 
. . . .  mn]  T and O = [oi, o2 . . . . .  072] w are the  measu red  mass  
and opt ical  emiss ion  spect ra  for the  set  of  process  set- 
points  Y. Fo r  example ,  O~k is the  va lue  of  the  kth OES 
channel ,  for the  j t h  process  sett ing, yj. The  pr incipal  com- 
ponen t s  of  the  mat r ices  M and O can be  calcula ted by 
f inding the  e igenvec to r s  of  their  r espec t ive  covar iance  ma- 
trices; Matr ices  g and C are the  sampled  covar iances  of  M 
and O, respec t ive ly  

1 L 
Bjk = ~ ~ (Mij - Mj)(Mik - ~rk) [1] 

c ~  = : - - :  E ( Q  - o j ) (o ,~ - o~) [2] 
$ - - 1  ~_---z-1 

w h e r e j ,  k =  1, 2 , . . . , 9 9 i n E q . [ 1 ] , j , k =  1, 2 , . . . , 1 0 2 0 i n  
Eq. [2], l = 72 (i.e., the  n u m b e r  of  exper iments ) ,  and Mj and 
Oj are def ined as 

E 1 z 
= ~ Mij [3] Mj ~i:, 

Oj = ~ ~ Ojj [4] 

The  e igenvec to r s  of  B and C cor respond  to the  pr incipal  
c o m p o n e n t s  of  the  mass  and optical  spectra  data, respec- 
tively. Le t  mat r ices  U = [ub u2, . . . ,  unl] T, and V = [vl, v2, 
. . . .  vn2] T, where  ui = [ul, u2, . . . ,  u99] T and vi = [vl, v2 . . . . .  
v~020] T and whe re  u i  and vi are the  e igenvec tors  wi th  the  i th 
largest  e igenva lue  for the  mat r ices  B and C, respect ively .  

T h e n  M and  O are  the  projec t ions  of  the  mass  and optical  
emiss ion  spectra  onto the i r  respec t ive  pr incipal  com- 
ponents ,  whe re  M = U x M T and O = V x O T, and l~I = [~a~, 
ffa2 . . . .  , m72], and 0 = [01, 02,. �9 �9 672]. ~/ij, for example ,  is the  
pro jec t ion  of  m i  onto  the  j t h  pr inc ipal  c o m p o n e n t  of  M. 

General ly ,  one  is in teres ted  in the  first few pr incipal  
componen t s ,  i.e., those  e igenvec to r s  wi th  the  largest  eigen- 
values ,  s ince  they  accoun t  for m o s t  of  the  var ia t ion in the  
data. A c o m m o n  prac t ice  for dec id ing  on the  n u m b e r  of  
pr inc ipal  c o m p o n e n t s  to keep  is to compare  the  eigen- 
va lues  of  the  covar iance  ma t r ix  wi th  the  average  of  the  
d iagonal  e l emen t s  of  the  covar iance  ma t r ix  (13). I f  the  n th  
largest  e igenva lue  is smal ler  than  this average  value,  then  
one  keeps  the  first n - 1 pr inc ipal  components .  Alterna- 
tively, i f  the  sum of the  first n e igenva lues  is a large per- 
cen tage  of  the  s u m  of the  d iagonal  e l emen t s  (trace) of  the  
covar iance  matr ix ,  and the  (n + 1)th largest  e igenva lue  
adds  a negl ig ib le  a m o u n t  to this sum, then  keep  only the  
first n pr inc ipal  componen t s .  

Parameter Estimation 
F r o m  the  m e a s u r e d  mass  and optical  emiss ion  spectra  

m i  and oi, the  task  is to es t imate  the  process  parameters  yi 
(i = 1, 2 , . . . ,  72). Af ter  the  pr incipal  c o m p o n e n t  analysis, 
we  have  a set of  vec to rs  in U and Y wh ich  define the  projec- 
t ions m~ --~ fill, and  oi --* 0i, respect ively .  S ince  the  d imen-  
sionali t ies of  ffl and ~ are small ,  we found  it helpful  to plot  
mj and oi in the  space  spanned  by the  first few pr incipal  
componen t s ,  and look  for c lus te r ing  pat terns  tha t  m igh t  
p rov ide  clues for bu i ld ing  a m o d e l  tha t  relates  the  process  
pa ramete rs  to the  measu red  variables.  F r o m  these  clus- 
te r ing  pat terns,  we  obse rve  (see the  Resul t s  section) a lin- 
ear re la t ionship  b e t w e e n  c h a m b e r  pressure  and the  mass  
spec t rum data. Similarly,  a l inear  m o d e l  should  also do a 
fair j ob  in es t imat ing  the  a m o u n t  of  thin-f i lm in the  cham-  
ber. Regress ion  analysis  is used  to cons t ruc t  these  l inear  
es t imators .  

Fu r the r  inspec t ion  of  the  pr incipal  c o m p o n e n t  projec- 
t ions reveals  tha t  the  re la t ionship  b e t w e e n  some  parame-  
ters, power ,  for example ,  and  the  m e a s u r e d  var iables  is not  
linear. One opt ion  for bu i ld ing  a nonl inear  es t imator  is to 
i m p l e m e n t  a feedforward,  mul t i - layered  neura l  network,  
and es t imate  the  des i red  m a p p i n g  us ing  the  error  back- 
p ropaga t ion  t ra in ing algor i thm.  The  reader  is referred to 
Ref. (14) for a comple t e  t r e a t m e n t  on such  ne tworks  and al- 
gor i thms.  We cons t ruc ted  two  neura l  ne tworks ;  for experi-  
m e n t  i, the  inpu t  to the  first ne twork  is ffl~, and after train- 
ing, the  ou tpu t  is an es t imate  of  Yi. The  inpu t  to the  second 
ne twork  is 6i, and after  t raining,  the  ou tpu t  is an es t imate  
of  Yi. 

An addi t ional  advan tage  that  is ga ined by s tudying  the  
pr incipal  c o m p o n e n t  pro jec t ions  is the  abi l i ty to see the  
re la t ive  sensi t ivi ty  of  each  sensor  to changes  in process  pa- 
rameters .  In  the  Resul t s  section,  the  project ions  of  the  op- 
t ical  emiss ion  pr inc ipa l  c o m p o n e n t s  sugges t  that  OES is 
m u c h  more  sens i t ive  to changes  in R F  power  than  RGA. 
Based  on this observat ion,  we  hypothes ize  that  process  pa- 
r amete r  e s t ima t ion  cou ld  be  a ided  i f  bo th  the  mass  and op- 
t ical  emiss ion  pro jec t ions  are  used  s imul taneous ly  as in- 
puts  to t he  est imators .  Therefore ,  a th i rd  ne twork  is built ,  
where ,  for e x p e r i m e n t  i, i npu t  inc ludes  bo th  ~ i  and b~, and 
after t raining,  the  ou tpu t  is an es t imate  of  y~. 

The  neura l  ne tworks  are  init ial ly t ra ined on the  ent i re  
data  set (72 exper iments )  and the i r  pe r fo rmance  (after 
100,000 exposures)  is compared  wi th  the  pe r fo rmance  of  
the  l inear  models .  Fo r  this  compar i son ,  the  pe r fo rmance  of  
each es t imator  is m e a s u r e d  by f inding the  root-mean-  
squared  error  (RMSE) of  each  pa rame te r  over  the  ent i re  
data  set (the same  data  set that  the  ne twork  was t ra ined on, 
and the  l inear  m o d e l  was fit ted to). 

To de te rmine  the  abi l i ty of  the  neura l  ne tworks  to gener-  
alize, we  adopt  the  concep t  of  cross-validat ion.  The  neura l  
ne tworks  are ini t ial ized to weigh ts  of  small,  r a n d o m  values  
and then  t ra ined and tes ted  on non in te r sec t ing  data  sets. 
Each  t ra in ing set consis ts  of  65 exper iments ,  and each tes t  
set consis ts  of  7 exper iments .  Af ter  exposu re  to a g iven  
t ra in ing set, the  R M S E  of the  ne twork ' s  es t imat ion  is de- 
t e rmined  for the  test  set. E igh t  pairs of  such  t ra in ing and 
test  sets are selected,  and the  degree  of  general izat ion of  
each  ne twork  is e s t ima ted  by the  average  R M S E  over  
these  e ight  tes t  sets. 

The  data  points  in a g iven  t ra in ing set are also fit ted to a 
l inear  model ,  and the  pe r fo rmance  of  this l inear  es t imator  
is gauged  by the  R M S E  for the  respec t ive  test  set. There  
are e ight  t ra in ing and  test  set pairs, so eight  such l inear  es- 
t imators  are  deve loped  for each  pa ramete r  and for each 
sensor. The  roo t -mean-squared  errors  of  the  l inear  est imat-  
ors are  t h e n  averaged  for each  sensor.  

Results 
Using  Eq. [1] and [2], we  calculated the  covar iance  matri-  

ces B and C. The  s u m  of  the  d iagonal  e lements  of  B, for ex- 
ample ,  is an es t imate  of  the  total  va r iance  p resen t  in the  
mass  s p e c t r u m  data. This  va lue  was 4.689 for B, and 
3.209 x 106 for C. The  vec tor  ul, wh ich  is the  first pr incipal  
c o m p o n e n t  of  M, has an e igenva lue  of  3.384. This  means  
that  pro jec t ion  of  the  mass  spec t rum data on Ul p rese rved  
72% of  the  var iance  in the  or iginal  data. The  e igenva lues  
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Fig. 1. Mass spectra for two sets 
of parameter settings on the RIE 
reactor. (A) Chamber conditions 
set to 25 mTorr, 3% O2, 97% 
CHF3, 100sccm, 200W, and 
quartz crystal microbalance's 
(QCM) estimate of thin film at 
9.7. (B) Chamber conditions set to 
75 mTorr, 3% O2, 97% CHF~, 
100sccm, 200W, and QCM at 
11.0. (C) First principal com- 
ponent of the mass spectra. (D) 
Second principal component of the 
mass spectra. 
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for u2, u3, and u,, are 1.137, 0.149, and 0.010, respectively. 
These first four principal components of M together con- 
tain 99.8% of the information in M (the first two PCs alone 
contain 96.4% of the information). In Fig. la  and b we have 
plotted the original raw spectra from two different 
samples. Figure lc) and d show the first two principal com- 
ponents ul, and u~. In Fig. lc  the variables with the largest 
weights are those with the greatest variance on the first 
principal component.  Channel 20, HF, 28 (CO and N), and 
channel 69, which is a fragment from CF4, varied most for a 
given change in the external chamber set-points, and this 
is reflected in their relatively large weights. 

The first four principal components  of O represent 99.9% 
of the information in O, and the first two PCs alone repre- 
sent 99.2% of this figure. In Fig. 2a and b we have plotted 
the raw data from the left spectra and in Fig. 2c and d that 
of Vs, v2, the first and second principal components.  

Although the effect of the process parameters on the 
RGA and OES may not be evident from Fig. 1 and 2, pro- 
jection of the measured spectra on their principal corn- 

ponents allows us to see relationships more clearly: Figure 
3 is a projection of M onto its first and second principal 
components.  Each point is identified with its experiment  
number  from Table I. The lines connect experiments 
where pressure and thin-film levels are held constant, 
while power and the gas mixture  are changed. The two 
parallel lines to the far left of the figure are for 25 mTorr, 
while the three parallel lines in the middle and far right are 
for 50 and 75 mTorr, respectively. Within each set of paral- 
lel lines, we have the condition where an experiment  with 
the same pressure, power, and mixture was repeated 
under higher thin-film contamination levels. The effect of 
this contamination then is a translation of the point along 
the first PC. The first PC is highly sensitive to pressure, 
and almost has no sensitivity to changes in power or gas 
mixture. The second PC is sensitive to the gas mixture and 
power, but  not to pressure or thin-film levels. From Fig. 3 
we can see that if pressure and gas mixture were known 
(or could be estimated to a high degree of certainty), then 
the RF power and thin-film levels can be estimated as well. 

2.0 

1.6 

Fig. 2. The "left" portion of the 1.2 
optical emission spectra. (A) ~-" 
Chamber conditions set to o 
25mTorr, 3% O~, 97% CHF3, "~ .0 .8  
100sccm, 200W, and quartz >_ 
crystal microbelance's (QCM) esti- I-- 
mate of thin film at 9.7. (B) Cham- 
ber conditions set to 75 mTorr, z 
15% Oz, 85% CHF3, 100. (C) ~ 20  
First principal component of the Z_ 
"left" optical spectra. (D) Second 16 
principal component of the "left" 
optical spectra, sccm, 350 W, and 
QCM at 12.7. I 2 
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Fig. 3. Projection of the mass 
spectrum data on its first two prin- 
cipal components. The lines con- 
nect experiments which had the 
same pressure levels. The points 
are labeled according to their ex- 
periment number in Table I. 

For estimation of thin-film levels independent  of all other 
parameters, the fourth PC (plotted vs. the first PC in Fig. 4) 
appears to be the most  effective, where we see sensitivity 
to thin-film levels but not to pressure. 

Since changes of equal magnitude in pressure result in 
more or less equal  changes of magnitude in the first PC, we 
expect  that a linear model  would do a fair job of  estimating 
chamber  pressures from the principal components  of M. 
On the other hand, the clustering patterns in the first four 
PC projections appear to indicate that no PC separated the 
effects of power from the effects of change in gas mixture. 
Therefore, we expect  that a linear model  would not be ap- 
propriate for this estimation. 

In Fig. 5 we 've  plotted the projection of O onto its first 
two principal components.  The lines again connect experi- 
ments where chamber  pressure is held constant. The 
points cluster based on what the chamber  pressure is. The 
distribution of the points within each pressure cluster is 

regulated by the RF power, gas mixture, and the thin-film 
levels. We can see from this figure that the OES is much 
more sensitive to changes in RF power than the RGA-- the  
more or tess straight lines of Fig. 5 have been replaced by 
jagged lines. There are three sets of jagged lines; the set in 
the upper  left corner consists of  two "parallel" jagged 
lines, the sets in the middle and lower right corner consist 
of three "parallel" jagged lines each. The effect of an in- 
crease in pressure is to translate a point along an axis run- 
ning from the upper left corner of this figure to the lower 
right corner. The effect of a change in gas mixture is to 
translate a point along an axis perpendicular to the before 
mentioned axis. The effect of an increase in RF power is 
similar to the increase in pressure, but the translation is of 
a smaller magnitude. 

Linear  es t imat ion . - -Us ing  regression analysis, we built 
linear esimators so that, for example, given rhi, we can esti- 
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Fig. 4. Projection of the mass 
spectrum on its first and fourth 
principal components. The lines 
connect experiments which had 
the same pressure levels. The 
points are labeled according to 
their experiment number in 
Table I. 
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Fig. 5. Projection of the optical 
emission spectrum on its first and 
second principal components. The 
lines connect experiments which 
had the same chamber pressure 
levels. The points are labeled ac- 
cording to their experiment num- 
ber in Table I. 
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mate  c h a m b e r  p ressure  Pi. Three  sets of  such l inear esti- 
mators  are bui l t  (each set consis ts  of  four  l inear  est imators ,  

-- Lm Lia Lin 
one for each  parameter) :  mi, -~ Yi, 6i, ~ Yi, and [rhi, 6i] --> Yi. 
Each  es t imator  is deve loped  by us ing all the  data  points  in 
the  72 expe r imen t s .  The  pe r fo rmance  of  each  es t imator  is 
measu red  by  its R M S E  over  the  same 72 data  points.  This  
pe r fo rmance  is l is ted in Table  II. 

F r o m  Table  II, it appears  that  a l inear  mode l  m a y  be suf- 
ficient for e s t ima t ing  c h a m b e r  pressure.  On the  o ther  
hand,  a l inear  m o d e l  appears  to pe r fo rm poor ly  for esti- 
ma t ing  power  f rom the  m e a s u r e d  mass  spec t rum.  The 

Lin Lin 
Oi ---> Yi m o d e l  does  no t  pe r fo rm as wel l  as the  Eai ~ Yi mode l  
for es t imat ing  pressure ,  mix ture ,  or thin-fi lm levels,  bu t  it 
pe r fo rms  signif icant ly be t te r  in predic t ing  the  appl ied 
power.  I f  the  c h a m b e r  p ressure  could  be  rel iably esti- 

Lira 
mated,  wh ich  appears  to be  the  s t rength  of  the  ~ai ~ Yl 
model ,  t hen  Fig. 5 sugges ts  that  es t imat ion  of  power  f rom 
the  opt ical  emiss ion  data  can be i m p r o v e d  even  further.  A 
" sensor  fus ion"  is beneficial  i f  the  resul t ing  mode l  proves  
more  accura te  than  the  m o d e l  where  each  of  the  sensors  
were  used  independen t ly .  Table  II suggests  that  w h e n  
both  sensors  are used,  pe r fo rmance  of  the  l inear  es imators  
improve  for all parameters ,  but  especial ly  so for power.  

The  ou tpu t  of  each  of  the  above  m e n t i o n e d  l inear  mod-  
els is a we igh ted  s u m  of  the  project ions  of  the  spectra onto 
the  pr inc ipa l  componen t s .  The  pr inc ipa l  componen t s  may  
or m a y  no t  have  any re la t ion to the  process  parameters ,  
bu t  the  weigh ts  of  the  l inear  mode ls  that  were  deve loped  
can be  used  to p roduce  a set of  ma t ched  filters, whose  out- 
puts  will  va ry  l inear ly  as a func t ion  of  any g iven  process  
parameter .  Fo r  example ,  take  a l inear  m o d e l  such  as the  

Lin 
one which  m a p p e d  ff, i -o p~, whe re  p is c h a m b e r  pressure.  
A filter is p r o d u c e d  w h e n  the  first four  PCs of  M are 
we igh ted  and s u m m e d  accord ing  to the  weights  of  the  
m e n t i o n e d  l inear  model .  This  filter has a special  property,  
however ;  w h e n  c h a m b e r  pressure  is increased  f rom Pl to 
p~ and the  m e a s u r e d  R G A  is fed to the  filter, its ou tpu t  

Table II. Root-mean-squared errors of the three linear estimators 
after regression analysis over the entire data set. 

Lin - Lin 
P a r a m e t e r  R a n g e  I~ i  - ~  Yi oi  --> Yi [1i11, oi]  - >  Yl 

Power (watts) 200-350 38.6 14.1 9.6 
Mixture (% O2) 3-15 1.44 1.77 1.22 

Pressure (mTorr) 25-75 0.81 2.68 0.65 
Thin-film 9-32 1.6 2.4 1.4 

(which is a scalar) will  show an increase  that  is approxi-  
mate ly  equa l  to P2 - Pl (the degree  of  accuracy  depends  on 
h o w  small  the  R M S E  of  the  original  l inear  m o d e l  was). 

The  m a t c h e d  filters for c h a m b e r  pressure  and thin-fi lm 
levels  f rom mass  s p e c t r u m  data  are  p lo t ted  in Fig. 6. As  the  
thin-f i lm in t he  c h a m b e r  bu i lds  up,  the  ou tpu t  of  the  filter 
of  Fig. 6b will  increase  proport ional ly .  This  is an encourag-  
ing resul t  s ince the  QCM is un l ike ly  to be  used  in the  man-  
ufac tur ing  e n v i r o n m e n t  due  to the  invas ive  na ture  of  its 
data  gathering.  The  filter of  Fig. 6b suggests  that  one  may  
be  able to use  a t r ans fo rmat ion  of  the  mass  spec t rum 
m e a s u r e m e n t s  as a " thin-f i lm moni tor . "  

The  m a t c h e d  filters for power  and thin-fi lm levels  f rom 
the  optical  emiss ion  s p e c t r u m  are p lo t ted  in Fig. 7. S ince  a 
stat is t ical ly s ignif icant  l inear  re la t ionship  exists  be tween  
the  measu red  opt ical  emiss ion  and c h a m b e r  p o w e r  and 
thin-f i lm levels,  the  spikes  of  Fig. 7a and b poin t  to species  
whose  m a g n i t u d e  of  optical  emiss ion  vary  propor t ional ly  
as a func t ion  of  these  process  parameters .  These  spikes are 
app rox ima te ly  at 483 and 656 nm, wh ich  are due  to CO and 
H. F r o m  Fig. 7a and b we  can hypothes ize  that  an increase 
in c h a m b e r  p o w e r  is h igh ly  corre la ted to an increase in CO 
and H. F r o m  Fig. 7b and c we  can hypothes ize  that  an in- 
crease  in thin-f i lm levels  is h igh ly  corre la ted to a decrease  
in H. 

Nonlinear estimation using neural networks.--From the  
resul ts  of  Table  II,  it appears  tha t  a l inear  t ransformat ion  
of  t he  mass  s p e c t r u m  does  a poor  job  of  es t imat ing  the  ap- 
pl ied RF  p o w e r  and the  02 mixture .  As  a poin t  of  compari-  
son, we  gauge  the  pe r fo rmance  of  a non l inear  t ransforma-  
t ion on the  same  data set. We choose  a feedforward,  
mul t i - layered  neura l  n e t w o r k  for this es t imat ion  task. 
Three  ne tworks  are t ra ined us ing  back-propagat ion  (14). 
The  pe r fo rmance  of  these  es t imators  on the  t ra ining set, 
after 100,000 exposures ,  is l is ted in Table  III. The  non- 
l inear  mapp ings  that  are p rov ided  by the  neura l  ne tworks  
per fo rm signif icant ly be t t e r  in es t imat ing  power  and 

Lin 
O2 mix ture ,  as c o m p a r e d  to the  ffii ~ Yi l inear  est imator .  In  

NN 
compar ing  [r~i, 6i] ~ Yi to [ffai, 5i] ---> Yi, the  pe r fo rmance  of  
the  neura l  ne twork  is at least  twice  as accura te  in est imat-  
ing  power ,  gas mix ture ,  and thin-f i lm levels.  In  fact, if  we 
a s sume  tha t  the  actual  condi t ions  of  the  c h a m b e r  were  
wi th in  1% of the  process  set-points,  t hen  the  root-mean-  
squared  error  of  the  neura l  ne twork  mode l  is wi th in  this 
no ise  level  w h e n  bo th  mass  and optical  emiss ion  spectra  
are used.  

Unfor tuna te ly ,  we  cannot  infer  tha t  the  neura l  ne twork  
has genera l ized over  the  space whe re  the  data  was 
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Fig. 6. The matched pressure and thin-film filters far the mass spec- 
trum data. For example, given an increase in chamber pressure of 
amount Ap, the projection of the measured RGA onto the pressure filter 
will result in a scalar whose value will increase by an amount equal to 
ap. 

s a m p l e d .  Th i s  is d u e  to t h e  fact  t h a t  t h e  n u m b e r  of  
s a m p l e d  da t a  p o i n t s  are  sma l l  c o m p a r e d  to t h e  space  t h a t  
ha s  b e e n  s p a n n e d ,  a n d  t h e r e f o r e  a " t e s t  se t"  has  no t  veri-  

Table III. Root-mean-squared errors of the three neural-network- 
based estimators after training on all the experiments. 

N N  N N  N N  
Parameter Range - m i  ~ Yl  Oi  ~ y ,  [ f f ' l i ,  o i l  - - >  Yi  

Power (watts) 200-350 22.9 10.6 2.4 
Mixture (% 02) 3-15 0.70 0.93 0.17 

Pressure (mTorr) 25-75 0.85 1.59 0.63 
Thin-film 9-32 1.5 1.9 0.6 

fled t h e  d e g r e e  of  gene ra l i z a t i on  of  e i t h e r  t h e  l inear  or  t he  
n e u r a l  n e t  m a p p i n g s .  Neve r the l e s s ,  s ince  t he  n e u r a l  ne t -  
w o r k  was  n o t  ab le  to  e s t i m a t e  p r e s s u r e  levels  s ign i f ican t ly  
b e t t e r  t h a n  t h e  l inea r  mode l s ,  a n d  s ince  t he  R M S E  of  t he  
l i nea r  m o d e l s  we re  re la t ive ly  small ,  i t  a p p e a r s  t h a t  t he  rela- 
t i o n s h i p  b e t w e e n  t he  m e a s u r e d  m a s s  s p e c t r u m  a n d  c h a m -  
be r  p r e s s u r e  is l inear .  F u r t h e r m o r e ,  t h e  p e r f o r m a n c e s  of  

NN NN 
mi --> yi a n d  G~---> y~ s u g g e s t  t h a t  e s t i m a t i n g  c h a m b e r  p o w e r  
f rom e i t h e r  m a s s  or  op t ica l  e m i s s i o n  spec t r a  is ve ry  diffi- 
cult ,  e v e n  w i t h  a n o n l i n e a r  mode l .  

To gauge  t h e  gene ra l i z a t i on  ab i l i ty  of  t he  e s t ima to r s ,  
pa i r s  of  t r a i n i n g  a n d  t e s t  se ts  are  se l ec ted  f r o m  the  or ig ina l  
72 e x p e r i m e n t s ,  a n d  t h e  p e r f o r m a n c e  of  t h e  l inea r  a n d  
n e u r a l  n e t w o r k - b a s e d  e s t i m a t o r s  are  c o m p a r e d  on  t h e  tes t  
se t  a f te r  e x p o s u r e  to  t h e  t r a i n i n g  se t  ( the  t r a i n i n g  a n d  tes t  
se ts  a re  m u t u a l l y  exclus ive) .  T h e  ave rage  R M S E  of  t h e  l in- 
ear  e s t i m a t o r s  a n d  t h e  n e u r a l  n e t w o r k s  for  t he  t e s t  se ts  are  
l i s t ed  in  T a b l e  IV. P e r f o r m a n c e s  of  t h e  l inea r  e s t i m a t o r s  
are  on ly  s l igh t ly  w o r s e  on  t he  t e s t  se t  (Table  IV), w h e n  
c o m p a r e d  to t h e  case  w h e n  m o d e l s  w e r e  f i t ted to t he  en t i r e  
da ta  se t  (Table  II). F o r  t he  case  of  p r e s s u r e  e s t ima t ion ,  per-  
f o r m a n c e  of  t h e  l inea r  m o d e l  is qu i t e  exce l l en t ,  p r o v i d i n g  
f u r t h e r  e v i d e n c e  t h a t  c h a m b e r  p r e s s u r e  a n d  m a s s  spec-  
t r u m  are  l inear ly  re la ted .  In  p r e d i c t i n g  p o w e r  a n d  gas  mix-  

N N  
t u r e  of  t h e  t e s t  set,  p e r f o r m a n c e  of  ffai --> y~ is s ign i f ican t ly  

I A n  
b e t t e r  t h a n  ffa~ --> yi, s u g g e s t i n g  t h a t  t h e  n o n l i n e a r  t r ans for -  
m a t i o n  l e a r n e d  b y  t h e  n e u r a l  n e t w o r k  ove r  t h e  t r a i n i n g  se t  
is suf f ic ien t  for  a r e a s o n a b l y  a c c u r a t e  e s t i m a t i o n  of  t h e  t e s t  
data .  T h e  R M S E  of  t he  n e u r a l  n e t  for  e s t i m a t i o n  f r o m  opti-  
cal e m i s s i o n  da ta  is b e t t e r  t h a n  t he  l i nea r  e s t i m a t o r  for  all 
p a r a m e t e r s .  Howeve r ,  t h i s  r e su l t  i nd i ca t e s  tha t ,  e x c e p t  for  
power ,  all  o t h e r  p a r a m e t e r s  c an  be  m o r e  accu ra t e ly  esti- 
m a t e d  u s i n g  t h e  m a s s  r a t h e r  t h a n  t h e  opt ica l  s p e c t r u m  
m e a s u r e m e n t s .  

W h e n  t h e  op t ica l  a n d  m a s s  s p e c t r u m  da t a  are  fused,  t h e  
R M S E  of  t h e  n e u r a l  n e t w o r k  is tw ice  as good  as t h e  l i nea r  
m o d e l  for  e s t i m a t i n g  power ,  a n d  four  t i m e s  as good  for  es- 
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Fig. 7. (a, b) The matched 
power filter for the optical emis- 
sion data. The peaks in the power 
filter are likely to be due to CO, in 
the left spectrum, and H, in the 
right spectrum, respectively. (c, d) 
The matched thin-film filter for the 
optical emission data. 
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Table IV. Average root-mean-squared errors of the estimators for the test sets. 

L [ a  N N  ~ L i n  NN - L i n  

Parameter 1i%--~ Yi fill ~ Yi ai ~ Yt Oi ~ Yi [l~i, Oi] "--> Yt [~i, Oi] ~ Yi 

Power 40.4 26.9 16.8 14.1 11.2 5.31 
Mixture 1.46 0.71 1.91 1.54 1.31 0.30 
Pressure 0.85 1.82 3.01 2.30 0.70 0.91 
Thin-film 1.82 1.89 2.92 2.44 1.68 1.18 

timating the gas mixture. For estimating chamber pres- 
sure from the fused data, the RMSE of both the linear and 
the neural network model  are within 2% of the highest 
pressures tested, suggesting that pressure can be very ac- 
curately estimated from the optical and mass spectra of 
the plasma using a linear estimator, and that the neural 
network is behaving essentially like a linear estimator for 
pressure. Results of Table IV also indicate that thin-film 
levels can be estimated reasonably accurately (to within 
4% of the highest values tested) with the neural network 
when both spectra are available. 

Discussion 
The ability to estimate process parameters from the opti- 

cal emission or mass spectrum measurements  is essential 
to real-time monitoring and diagnosis of RIE. For exam- 
ple, if there is a leaky valve, or an inappropriate amount of 
RF power is being applied, then the estimators should be 
able to indicate that there is something wrong and point to 
a specific process parameter as the probable cause. This 
second ability, i.e., being able to decipher the effect of one 
process parameter independent  of another, is crucial for a 
controller which attempts to match a predefined "state 
trajectory" for its process, where in our case, the state of 
this process is observed by the measured mass and optical 
emission spectra. 

Building this controller requires defining the relation- 
ship between the measured variables, i.e., the bulk spectra, 
and the input parameters of the process, i.e., pressure, 
power, and gas mixture. But  the state of the process also 
depends on a set of  internal parameters, i.e., thin-film con- 
tamination levels, whose values cannot be manipulated by 
the controller. The problem that we are concerned with is 
how to estimate the process's input and internal parame- 
ters from the in situ measurements.  

Through principal component  analysis, we show that 
nearly all of the information in each of the original spectra 
can be represented by a set of four new variables. These 
variables are the projections of the measured spectra onto 
the first four principal components  of each data set. This 
transformation produces a new data set whose complexity 
(as measured by its dimensionality) is minimized, while its 
information content  (as measured  by its variance) is al- 
most identical to that of the original data set. 

The plots of the new data set show a remarkably regular 
clustering pattern for both the mass and optical emission 
spectra. The points cluster as a function of pressure, and 
the pattern within each cluster is regulated by the other 
process parameters. 

The relatively good performance of the linear models on 
predicting pressure and thin-film levels from the mass 
spectrum, and power and thin-film levels from the optical 
emission spectrum, suggests that a matched filter can be 
developed for each of the above transformations (Fig. 6 
and 7). The output of each such filter is a scalar whose 
change is equal to the change in one of the process param- 
eters. These filters also convey information on how the 
process parameters relate to chemical and physical phe- 
nomenon. For example, from Fig. 7a and b we can forward 
a conjecture that changes in applied RF power can be esti- 
mated by the amount  of optical emission produced by CO 
and H. 

Since the performance of the linear models on predict- 
ing power and mixture  is generally poor, we developed a 
set of nonlinear estimators by constructing multi-layered 
neural networks, and trained and tested both estimators 
on pairs of disjoint "training" and "test" sets. The perform- 

ance of the neural network-based estimators is signifi- 
cantly better than that of the linear estimators (see 
Table IV) for power and gas mixture, for all three sensor 
modalities tested. However,  these ~ results also illustrate 
that it would be difficult to accurately estimate chamber 
power from the mass spectrum measurements,  even with a 
nonlinear model, and that for estimating chamber pres- 
sure from the mass spectrum data, a nonlinear model  is 
not expected to perform better since the performance of 
the linear estimator is extremely good. Furthermore, from 
Table IV we can conclude that estimating chamber pres- 
sure, gas mixture,  and thin-film levels can be accom- 
plished much more accurately when the mass spectrum 
rather than optical emission data is used (note that the lin- 
ear model  that used mass spectrum data out performed 
both the linear and the neural network models which used 
the optical emission spectrum). However, since the output 
of the OES is more Sensitive to power but less sensitive to 
presure than the RGA, we suggest that use of both of these 
sensors can result in a model  whose performance is better 
than when each sensor is used independently. Results 
listed in Table IV appear to confirm this idea; when both 
sensors are used as inputs to the neural network, thin-film 
level can be estimated to within 4% of its largest value, 
while power, mixture,  and pressure can be estimated to 
within 2% of their largest values. 

The ability to estimate thin-film contamination levels 
from the mass and optical emission spectra, as shown in 
this report, is an important  result because it has been 
shown that growth of this material leads to significant re- 
ductions in the Si etch rate (9), and because the current in- 
vasive technique as used by the QCM is considered to be 
unusable in the manufacturing floor. 

Manuscript submitted April 22, 1991; revised manu- 
script received Oct. 10, 1991. 
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