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ABSTRACT

We report on a simple technique that characterizes the effect of process parameters (i.e., pressure, RF power, and gas
mixture) on the optical emission and mass spectra of CHF3/O; plasma. This technique is sensitive to changes in chamber
contamination levels (e.g., formation of Teflon-like thin-film), and appears to be a promising tool for real-time monitoring
and control of reactive ion etching. Through principal component analysis, we observe that 99% of the variance in the
more than 1100 optical and mass spectra channels are accounted for by the first four principal components of each sensor.
Projection of the mass spectrum on its principal components suggests a strong linear relationship with respect to chamber
pressure. This representation also shows that the effect of changes in thin-film levels, gas mixture, and RF power on the
mass spectrum is complicated, but predictable. To model the nonlinear relationship between these process parameters
and the principal component projections, a feedforward, multi-layered neural network is trained and is shown to be able
to predict all process parameters from either the mass or the optical spectrum. The projections of the optical emission
spectrum on its principal components suggest that optical emission spectroscopy is much more sensitive to changes in RF
power than the mass spectrum, as measured by the residual gas analyzer. Model performance can be significantly im-
proved if both the optical and mass spectrum projections are used (so called sensor fusion). Our analysis indicates that ac-
curate estimates of process parameters and chamber conditions can be made with relatively simple neural network mod-

els which fuse the principal components of the measured optical emission and mass spectra.

In the reactive ion etching (RIE) process, plasma charac-
teristics depend on many parameters; some of these pa-
rameter values are set by the tool operator, e.g., chamber
pressure, RF power, and gas flow, while others are internal
to the condition of the chamber, e.g., thin-film thickness on
the chamber walls, or the amount of material etched.
Plasma characteristics can be observed using in situ meas-
urements, e.g., via optical emission spectroscopy (OES) or
residual gas analysis (RGA). How these measurements can
be used to estimate the process parameters is the question
that this paper is concerned with.

Currently, an etch process is arrived at through experi-
ments which try to find the particular process parameters
that result in the desired etch selectivity and profile. These
conditions translate into a recipe which typically defines
the set-points for gas flow, chamber pressure, RF power,
and etching time. But since a chamber is usually stressed
under high throughput, the chamber’s internal parameters
will vary even though the input parameters (as set by the
operator) have not changed. This leads to results that are
difficult to reproduce. The situation is further complicated
by the fact that an unsuccessful etch may be caused by a
mismatch between the process settings and the conditions
actually produced by the machine’s hardware, which is the
case when there is, for example, a malfunctioning mass
fiow controller.

Research on modeling the relationship between process
set-points and the desired etch profile (1-3) has greatly im-
proved our understanding of the basic physical and chemi-
cal mechanisms in the RIE process. These models typi-
cally try to account for the plasma chemical reactions, the
ionization and motion in an electric field, and the surface
reaction kinetics (4). For monitoring and control applica-
tion, however, it is unlikely that such models can be
readily applied, since the particular reaction rates and
cross sections are generally unknown.

Another approach has been to track the chamber condi-
tions in situ. The idea here is to monitor the trajectory of
one or two channels of an OES or RGA for the “perfect
chamber,” and then try to track that trajectory during the
manufacturing process. Various artificial intelligence tools
have been devised that, through rule-based expert sys-
tems, can detect significant deviation from the desired
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trajectory (5). However, we know only of the work of Bol-
ker et al. (6) where an in situ measurement, the RGA, was
correlated to the process set-points.

In the present work we use in situ measurements in
order to identify how the observed state of the plasma de-
pends on each input process parameter (e.g. pressure,
power, and/or mass flow/composition of gas). If it can be
shown that the effect of each process parameter on the ob-
served state of the plasma is uniquely identifiable, then
discrepencies between the current and desired state of the
plasma can be attributed to a particular parameter—facili-
tating monitoring and diagnosis. Furthermore, the system
should be able to alert the operator to conditions that can-
not be overcome by manipulation of the input parameters,
such as leaks in the chamber, or significant formation of
contaminations (e.g., fluorocarbon, Teflon-like film) inside
the chamber (7, 8).

This report describes our effort for identifying the ef-
fects of the process parameters on the in situ measure-
ments of OES and RGA. Using principal component anal-
ysis (PGA), we show that changes in chamber pressure, RF
power, gas mixture, and contamination levels result in
complex but predictable clustering patterns when the
OES and RGA measurements are projected onto their first
few principal components. Qur results indicate that for the
limited set of experiments conducted, nearly all of the in-
formation in the OES and RGA measurements can be rep-
resented by these principal components. This way of rep-
resenting the insitu measurements allows for very
efficient modeling, since the characteristics of the plasma
can be represented with only a few variables with almost
no loss of information. Furthermore, relationships are
much easier to visualize due to the significant reduction in
dimensionality of the data set.

We explored both linear and nonlinear estimators for
modeling the relationship between process parameters
and these principal component projections. For the non-
linear estimator, we use a feed-forward, multi-layered neu-
ral network. The results reported here suggest that accur-
ate estimates of process set-points and chamber
contamination levels can be made with relatively simple
neural network models, using the principal components of
the OES and RGA measurements.

Experiments

In the present work, we are concerned with the follow-
ing problem: A mixture of CHFyO, is vertically disso-
ciated and ionized at a certain chamber pressure and RF
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Table I. Experiment numbers and the corresponding process parameter values.

Exp. Power Mix Press. Thin Exp. Power Mix Press. Thin
no. watts % Oq mTorr film no. watts % Q4 mTorr film
1 200 3 25 9.4 37 200 3 50 20.2
2 300 3 25 9.5 38 300 3 50 20.2
3 350 3 25 9.6 39 350 3 50 20.3
4 200 9 25 9.8 40 200 9 50 20.5
5 300 9 25 9.8 41 300 9 50 20.5
6 350 9 25 9.9 42 350 9 50 20.6
7 200 15 25 10.0 43 200 15 50 20.6
8 300 15 25 10.0 44 300 15 50 20.7
9 350 15 25 10.1 45 350 15 50 20.7
10 200 3 50 10.2 46 200 3 75 20.9
11 300 3 50 10.3 47 300 3 75 21.2
12 350 3 50 10.4 48 350 3 75 214
13 200 9 50 10.5 49 200 9 75 21.8
14 300 9 50 10.5 50 300 9 75 22.0
15 350 9 50 10.6 51 350 9 75 22.2
16 200 15 50 10.7 52 200 15 75 22.4
17 300 15 50 10.7 53 300 15 5 22.5
18 350 15 50 10.7 54 350 15 75 22.6
19 200 3 75 11.0 55 200 3 50 30.0
20 300 3 75 11.3 56 300 3 50 30.0
21 350 3 75 11.7 57 350 3 50 30.0
22 200 9 75 12.0 58 200 9 50 30.2
23 300 9 75 12.2 59 300 9 50 30.2
24 350 9 75 12.3 60 350 9 50 30.3
25 200 15 75 12.6 61 200 15 50 304
26 300 15 75 12.6 62 300 15 50 30.4
27 350 15 75 12.7 63 350 15 50 30.4
28 200 3 25 19.3 64 200 3 75 30.5
29 300 3 25 19.4 65 300 3 75 30.8
30 350 3 25 19.5 66 350 3 75 31.2
31 200 9 25 19.7 67 200 9 75 31.7
32 300 g 25 19.8 68 300 9 75 31.8
33 350 9 25 19.9 69 350 9 75 32.1
34 200 15 25 19.9 70 200 15 75 32.4
35 300 15 25 20.0 71 300 15 75 324
36 350 15 25 20.1 72 350 15 75 32.5

power (no wafer is present in the chamber). From the
measured optical emission and mass spectra, the task is to
estimate the value of these parameters, as well as the
amount of Teflon-like thin-film (7, 8) present on the surface
of the chamber’s interior.? Build-up of this film (here after
referred to as thin-film) changes the characteristics of the
plasma, can significantly reduce the Si etch rate (8-11), and
in extreme cases, can flake off and seriously contaminate
the wafer.

For the following experiments, the RIE reactor was a
13.56 MHz flexible diode, with a 40 cm diameter lower
electrode and a power range from 0 to 1000 W. Chamber
pressure was controlled by an automatic throttle valve and
measured by an MKS Baratron. The CHF/O, mix was de-
termined by set-points on the MKS mass/flow controllers
with a flow range of 0 to 100 sccm. The optical emission of
the plasma was analyzed using a 512 diode array (150
groves/mm) EG+G PARC Model 1460, with a dual position
stepper motor adjustment on the diffraction grating that
allowed for viewing of emissions from 240 to 900 nm.
Downstream mass spectra for masses 1 to 99 were taken on
an Inficon Quadrex 200 RGA. Both the OES and RGA
were interfaced to an IBM PS/2 Model 80 for efficient data
collection and labeling. An Inficon IC6000 Quartz Crystal
Microbalance (QCM), with the crystal mounted on the
wall, was used as an indicator of the amount of thin-film in
the chamber? (12).

Chamber pressure was changed from 25 to 75 mTorr by
increments of 25 mTorr. Gas flow was kept constant at
100 scem, and the ratio of CHFy/O, was changed from

3 Note that because no wafer was present in the chamber, for any
given set of process set-points, the plasma’s characteristics, and
therefore the state of the process, did not vary significantly with re-
spect to time. Although under conditions of high pressure and
power one can readily observe thin-film build-up over several min-
utes, which results in a change in the species present in the optical
and mass spectra, these measures remain essentially stationary for
a period of a few tens of seconds after the power is applied. We as-
sumed that the relationship between the in situ measurements and
the process parameters in stationary.

¢ Thin-film growth is reflected in a lowering of the frequency
readout of the QCM. Unfortunately, without knowledge of the film
density, this readout cannot be converted to an absolute measure

of the thin-film thickness. However, as a relative measure, the QCM
provides an accurate estimate of the change in thin-film thickness.

97%/3% to 85%/15% by increments of 6%. RF power was set
at either 200, 300, or 350 W for each of the above permuta-
tions. To intentionally and quickly deposit thin-film, we
set the input parameters at 50 mTorr, 100 sccm CHF;, and
250 W. The QCM showed rapid build-up of thin-film on the
chamber walls, which was accompanied by a drop in Vpe.
We recorded the change in the QCM’s output, and repeated
the above set of experiments at medium and high levels of
thin-film. In Table I we’ve listed the experiment numbers
and the corresponding process parameter values.

The RGA and OES measurements were stored for each
process set-point. We stored the RGA spectrum for masses
1 to 99, and the spectrum from 251.8 to 562.2 nm for the
first 510 channels of optical emission (resolution of
0.61 nm), and from 549.2 to 860.9 for the second 510 chan-
nels. A total of 72 experiments were performed (see
Table I).

Principal Component Analysis

Principal component analysis enables reduction of a
data set while retaining most of its variation. The new set
of variables are called the principal components derived
from linear transformations of the original ones. They are
statistically uncorrelated to each other and typically a
small fraction of them (the first several) contain the major-
ity of the variation (13). For the problem at hand, changes
in the process parameters result in changes in the state of
the plasma, which is estimated by the 99 variables of the
measured mass spectrum and the 1020 variables of the
measured optical emission spectrum. By visual inspec-
tion, it is perhaps possible to correlate patterns in parts of
these spectra with changes in the process parameters. But
because the number of recorded variables is so large, it is
very difficult, for example, to see the effect of RF power on
the RGA. Furthermore, building a model that estimates
four process parameters from some 1119 different vari-
ables would be impractical for both efficiency and ac-
curacy considerations.

By employing principal component analysis, we hope to
find a small subspace spanned by a set of orthogonal vec-
tors (the first few principal components), where projec-
tions of the original data can be effectively studied. If these
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few uncorrelated variables reproduce most of the variation
in all of the original variables, and if these variables are in-
terpretable (i.e., have a physical meaning), then the PCs
give an alternate, and much simpler description of the data
than the original variables. Our results demonstrate that
this is in fact the case for the RIE process described in the
previous section.

Computing the principal components amounts to calcu-
lating the eigenvectors in descending order of the cova-
riance matrix of the variables in question. Let y; = [s;, ¢;, ps,
¢;]", represent the process parameter vector for experiment
i, where s is the RF power, q is the percent O; in the CHFy/
0, mixture, p is the chamber pressure, and c is the thin-
film contamination level as measured by a quartz crystal
microbalance (QCM). Let m; =[m;, m,, ..., my,I* and o; =
[0y, Oy - - -, Oygyl”, TEPresent the mass and optical spectra
for experiment ¢, respectively. The task is to build a model
which, given an observation of the state of the process, m;
and o;, produces an estimate of the process’s input and in-
ternal parameters, y.. Our approach is to use principal
component analysis to find m; and ©; from m; and o; where
the dimensionality of m; and ©; is much less than m; and e,
and then build linear and nonlinear models that describe y,
as a function of m; and ;.

The matrix Y = [y, ¥, - . ., ¥22I" is the set of process set-
points visited in the experiments. Matrices M = [m;, m,,

, myT and O = [0, 0, . . ., 0:5] are the measured mass
and optical emission spectra for the set of process set-
points Y. For example, Oy is the value of the kth OES
channel, for the jth process setting, y;. The principal com-
ponents of the matrices M and O can be calculated by
finding the eigenvectors of their respective covariance ma-
trices; Matrices B and C are the sampled covariances of M
and O, respectively

1 U — —
= —1 E Mij - Mj)(Mik - My [1]
1 ¢ _ _
CJk = —1 2 (Og - Oj)(oik -0 [2]
- 1:=

wherej, k=1,2,...,99in Eq.[1],j,k=1,2,..., 1020 in
Eq.[2],l =72 (i.e, the number of expenments) and M, and
O, are defined as

Mj =

z M, [3]

S 04 4]

The eigenvectors of B and C correspond to the principal
components of the mass and optical spectra data, respec-
tively. Let matrices U = [u,, us, ..., unl]T, and V = [vy, vy,
v,.2] where w; = [uy, Uy, . .., Ug]" and v; = [vy, vy, . . .,

vmzo] and where u; and v; are the eigenvectors with the ith
largest eigenvalue for the matrices B and C, respectively.

Then M and O are the projections of the mass and optical
emission spectra onto their respective principal com-
ponents, where M = U x MTand O = V x OT, and M = [i,,
My, . .., My, and O =[8;, &y, . . . , Oral. M,J, for example, is the
projection of m; onto the jth principal component of M.

Generally, one is interested in the first few principal
components, i.e., those eigenvectors with the largest eigen-
values, since they account for most of the variation in the
data. A common practice for deciding on the number of
principal components to keep is to compare the eigen-
values of the covariance matrix with the average of the
diagonal elements of the covariance matrix (13). If the nth
largest eigenvalue is smaller than this average value, then
one keeps the first n — 1 principal components. Alterna-
tively, if the sum of the first n eigenvalues is a large per-
centage of the sum of the diagonal elements (trace) of the
covariance matrix, and the (n + 1)th largest eigenvalue
adds a negligible amount to this sum, then keep only the
first n principal components.

Parameter Estimation

From the measured mass and optical emission spectra
m; and o;, the task is to estimate the process parameters y;
(i=1,2,...,72). After the principal component analysis,
we have a set of vectors in U and V which define the projec-
tions m; — m;, and 0; — 8;, respectively. Since the dimen-
sionalities of m and & are small, we found it helpful to plot
m; and o; in the space spanned by the first few principal
components, and look for clustering patterns that might
provide clues for building a model that relates the process
parameters to the measured variables. From these clus-
tering patterns, we observe (see the Results section) a lin-
ear relationship between chamber pressure and the mass
spectrum data. Similarly, a linear model should also do a
fair job in estimating the amount of thin-film in the cham-
ber. Regression analysis is used to construct these linear
estimators.

Further inspection of the principal component projec-
tions reveals that the relationship between some parame-
ters, power, for example, and the measured variables is not
linear. One option for building a nonlinear estimator is to
implement a feedforward, multi-layered neural network,
and estimate the desired mapping using the error back-
propagation training algorithm. The reader is referred to
Ref. (14) for a complete treatment on such networks and al-
gorithms. We constructed two neural networks; for experi-
ment i, the input to the first network is fa;, and after train-
ing, the output is an estimate of y;. The input to the second
network is 8;, and after training, the output is an estimate
of Y.

An additional advantage that is gained by studying the
principal component projections is the ability to see the
relative sensitivity of each sensor to changes in process pa-
rameters. In the Results section, the projections of the op-
tical emission principal components suggest that OES is
much more sensitive to changes in RF power than RGA.
Based on this observation, we hypothesize that process pa-
rameter estimation could be aided if both the mass and op-
tical emission projections are used simultaneously as in-
puts to the estimators. Therefore, a third network is built,
where, for experiment i, input includes both m; and 8;, and
after training, the output is an estimate of y..

The neural networks are initially trained on the entire
data set (72 experiments) and their performance (after
100,000 exposures) is compared with the performance of
the linear models. For this comparison, the performance of
each estimator is measured by finding the root-mean-
squared error (RMSE) of each parameter over the entire
data set (the same data set that the network was trained on,
and the linear model was fitted to).

To determine the ability of the neural networks to gener-
alize, we adopt the concept of cross-validation. The neural
networks are initialized to weights of small, random values
and then trained and tested on nonintersecting data sets.
Each training set consists of 65 experiments, and each test
set consists of 7 experiments. After exposure to a given
training set, the RMSE of the network’s estimation is de-
termined for the test set. Eight pairs of such training and
test sets are selected, and the degree of generalization of
each network is estimated by the average RMSE over
these eight test sets.

The data points in a given training set are also fitted to a
linear model, and the performance of this linear estimator
is gauged by the RMSE for the respective test set. There
are eight training and test set pairs, so eight such linear es-
timators are developed for each parameter and for each
sensor. The root-mean-squared errors of the linear estimat-
ors are then averaged for each sensor.

Results

Using Eq.[1] and [2], we calculated the covariance matri-
ces B and C. The sum of the diagonal elements of B, for ex-
ample, is an estimate of the total variance present in the
mass spectrum data. This value was 4.689 for B, and
3.209 x 108 for C. The vector u;, which is the first principal
component of M, has an eigenvalue of 3.384. This means
that projection of the mass spectrum data on u, preserved
72% of the variance in the original data. The eigenvalues
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for u,, u3, and uy, are 1.137, 0.149, and 0.010, respectively.
These first four principal components of M together con-
tain 99.8% of the information in M (the first two PCs alone
contain 96.4% of the information). In Fig. 1a and b we have
plotted the original raw spectra from two different
samples. Figure 1¢) and d show the first two principal com-
ponents u;, and u,. In Fig. 1c the variables with the largest
weights are those with the greatest variance on the first
principal component. Channel 20, HF, 28 (CO and N), and
channel 69, which is a fragment from CFy, varied most fora
given change in the external chamber set-points, and this
is reflected in their relatively large weights.

The first four principal components of O represent 99.9%
of the information in 0, and the first two PCs alone repre-
sent 99.2% of this figure. In Fig. 2a and b we have plotted
the raw data from the left spectra and in Fig. 2c and d that
of vy, vy, the first and second principal components.

Although the effect of the process parameters on the
RGA and OES may not be evident from Fig. 1 and 2, pro-
jection of the measured spectra on their principal com-

Fig. 2. The "left” portion of the
optical emission spectra. (A)
Chamber conditions set to
25 mTorr, 3% O, 97% CHF,,

Me/z

ponents allows us to see relationships more clearly: Figure
3 is a projection of M onto its first and second principal
components. Each point is identified with its experiment
number from TableI. The lines connect experiments
where pressure and thin-film levels are held constant,
while power and the gas mixture are changed. The two
parallel lines to the far left of the figure are for 25 mTorr,
while the three parallel lines in the middle and far right are
for 50 and 75 mTorr, respectively. Within each set of paral-
lel lines, we have the condition where an experiment with
the same pressure, power, and mixture was repeated
under higher thin-film contamination levels. The effect of
this contamination then is a translation of the point along
the first PC. The first PC is highly sensitive to pressure,
and almost has no sensitivity to changes in power or gas
mixture. The second PC is sensitive to the gas mixture and
power, but not to pressure or thin-film levels. From Fig. 3
we can see that if pressure and gas mixture were known
(or could be estimated to a high degree of certainty), then
the RF power and thin-film levels can be estimated as well.

100 sccm, 200W, and quartz
crystal microbalance’s (QCM) esti-
mate of thin film at 9.7. (B) Cham-
ber conditions set to 75 mTorr,
15% O, 85% CHF; 100. (C)
First principal component of the
“left” optical spectra. {D) Second
principal component of the “left”
optical spectra. scem, 350 W, and
QCMat 12.7.
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For estimation of thin-film levels independent of all other
parameters, the fourth PC (plotted vs. the first PC in Fig. 4)
appears to be the most effective, where we see sensitivity
to thin-film levels but not to pressure.

Since changes of equal magnitude in pressure result in
more or less equal changes of magnitude in the first PC, we
expect that a linear model would do a fair job of estimating
chamber pressures from the principal components of M.
On the other hand, the clustering patterns in the first four
PC projections appear to indicate that no PC separated the
effects of power from the effects of change in gas mixture.
Therefore, we expect that a linear model would not be ap-
propriate for this estimation.

In Fig. 5 we've plotted the projection of O onto its first
two principal components. The lines again connect experi-
ments where chamber pressure is held constant. The
points cluster based on what the chamber pressure is. The
distribution of the points within each pressure cluster is

regulated by the RF power, gas mixture, and the thin-film
levels. We can see from this figure that the OES is much
more sensitive to changes in RF power than the RGA—the
more or less straight lines of Fig. 5 have been replaced by
jagged lines. There are three sets of jagged lines; the set in
the upper left corner consists of two “parallel” jagged
lines, the sets in the middle and lower right corner consist
of three “parallel” jagged lines each. The effect of an in-
crease in pressure is to translate a point along an axis run-
ning from the upper left corner of this figure to the lower
right corner. The effect of a change in gas mixture is to
translate a point along an axis perpendicular to the before
mentioned axis. The effect of an increase in RF power is
similar to the increase in pressure, but the translation is of
a smaller magnitude.

Linear estimation.—Using regression analysis, we built
linear esimators so that, for example, given m;, we can esti-
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Fig. 4. Projection of the mass
spectrum on its first and fourth
principal components. The lines
connect experiments which had
the same pressure levels. The
points are labeled according to
their experiment number in
Table 1.
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Fig. 5. Projection of the optical
emission spectrum on its first and
second principal components. The
lines connect experiments which
had the same chamber pressure
levels. The points are labeled ac-
cording to their experiment num-
ber in Table |.

SECOND PRINC COMP (x10%)
A
T
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0.5

mate chamber pressure p;. Three sets of such linear esti-
mators are built (each set consists of four linear estlmators,

one for each parameter) m;, = Yi, 0, = y:, and [, 01] = Yie
Each estimator is developed by using all the data points in
the 72 experiments. The performance of each estimator is
measured by its RMSE over the same 72 data points. This
performance is listed in Table II.

From Table 11, it appears that a linear model may be suf-
ficient for estimating chamber pressure. On the other
hand, a linear model appears to perform poorly for esti-
matmg power from the measured mass spectrum The

o; g yi model does not perform as well as the m; Ly yi model
for estimating pressure, mixture, or thin-film levels, but it
performs significantly better in predicting the applied
power. If the chamber pressure could be reliably estl-

mated, which appears fo be the strength of the My U Y.
model, then Fig. 5 suggests that estimation of power from
the optical emission data can be improved even further. A
“sensor fusion” is beneficial if the resulting model proves
more accurate than the model where each of the sensors
were used independently. Table IT suggests that when
both sensors are used, performance of the linear esimators
improve for all parameters, but especially so for power.
The output of each of the above mentioned linear mod-
els is a weighted sum of the projections of the spectra onto
the principal components. The principal components may
or may not have any relation to the process parameters,
but the weights of the linear models that were developed
can be used to produce a set of matched filters, whose out-
puts will vary linearly as a function of any given process
parameter. For exampie, take a linear model such as the
one which mapped f; — pi, where p is chamber pressure.
A filter is produced when the first four PCs of M are
weighted and summed according to the weights of the
mentioned linear model. This filter has a special property,
however; when chamber pressure is increased from p; to
pz and the measured RGA is fed to the filter, its output

Table li. Root-mean-squared errors of the three lineor estimators
after regression analysis over the entire data set.

in i _ . Lin
Parameter Range 1y =" o; s Y [m,, 6;] - ¥
Power (watts) 200-350 38.6 14.1 9.6
Mixture (% O5) 3-15 1.44 1.77 1.22
Pressure (mTorr) 25-75 0.81 2.68 0.65
Thin-film 9-32 1.6 2.4 1.4

1.0 1.5 2.0 2.5
FIRST PRINC COMP (x10%)

(which is a scalar) will show an increase that is approxi-
mately equal to p, — p; (the degree of accuracy depends on
how small the RMSE of the original linear model was).

The matched filters for chamber pressure and thin-film
levels from mass spectrum data are plotted in Fig. 6. As the
thin-film in the chamber builds up, the output of the fiiter
of Fig. 6b will increase proportionally. This is an encourag-
ing result since the QCM is unlikely to be used in the man-
ufacturing environment due to the invasive nature of its
data gathering. The filter of Fig. 6b suggests that one may
be able to use a transformation of the mass spectrum
measurements as a “thin-film monitor.”

The matched filters for power and thin-film levels from
the optical emission spectrum are plotted in Fig. 7. Since a
statistically significant linear relationship exists between
the measured optical emission and chamber power and
thin-film levels, the spikes of Fig. 7a and b point to species
whose magnitude of optical emission vary proportionally
as a function of these process parameters. These spikes are
approximately at 483 and 656 nm, which are due to CO and
H. From Fig. 7a and b we can hypothesize that an increase
in chamber power is highly correlated to an increase in CO
and H. From Fig. Tb and ¢ we can hypothesize that an in-
crease in thin-film levels is highly correlated to a decrease
in H.

Nonlinear estimation using neural networks.—From the
results of Table IT, it appears that a linear transformation
of the mass spectrum does a poor job of estimating the ap-
plied RF power and the O, mixture. As a point of compari-
son, we gauge the performance of a nonlinear transforma-
tion on the same data set. We choose a feedforward,
multi-layered neural network for this estimation task.
Three networks are trained using back-propagation (14).
The performance of these estimators on the training set,
after 100,000 exposures, is listed in Table III. The non-
linear mappings that are provided by the neural networks
perform significantly better in estimating power and

. . Lin . .
O, mixture, as compared to the m; — y; linear estimator. In

. Lin NN

comparing [ih;, 6;] — y; to [m;, 6;] — ¥;, the performance of
the neural network is at least twice as accurate in estimat-
ing power, gas mixture, and thin-film levels. In fact, if we
assume that the actual conditions of the chamber were
within 1% of the process set-points, then the root-mean-
squared error of the neural network model is within this
noise level when both mass and optical emission spectra
are used.

Unfortunately, we cannot infer that the neural network
has generalized over the space where the data was
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Fig. 6. The matched pressure and thin-film filters for the mass spec-
trum data. For example, given an increase in chamber pressure of
amount Ap, the projection of the measured RGA onto the pressure filter
will result in a scalar whose value will increase by an amount equal to
Ap.

sampled. This is due to the fact that the number of
sampled data points are small compared to the space that
has been spanned, and therefore a ‘“test set” has not veri-

Matched Power Filter, Left Spectrum

0008} - |

Table I1L. Root-mean-squared errors of the three neural-network-
based estimators after training on all the experiments.

N
Parameter Range ~my = y., o iy v, [m,o]-y
Power (watts) 200-350 22.9 10.6 24
Mixture (% O5) 3-15 0.70 0.93 0.17
Pressure (mTorr) 25-75 0.85 1.58 0.63
Thin-film 8-32 15 1.9 0.6

fied the degree of generalization of either the linear or the
neural net mappings. Nevertheless, since the neural net-
work was not able to estimate pressure levels significantly
better than the linear models, and since the RMSE of the
linear models were relatively small, it appears that the rela-
tionship between the measured mass spectrum and cham-
ber pressure is linear. Furthermore, the performances of

m; = y: and 0; BN ¥: suggest that estimating chamber power
from either mass or optical emission spectra is very diffi-
cult, even with a nonlinear model.

To gauge the generalization ability of the estimators,
pairs of training and test sets are selected from the original
72 experiments, and the performance of the linear and
neural network-based estimators are compared on the test
set after exposure to the training set (the training and test
sets are mutually exclusive). The average RMSE of the lin-
ear estimators and the neural networks for the test sets are
listed in Table IV. Performances of the linear estimators
are only slightly worse on the test set (Table IV), when
compared to the case when models were fitted to the entire
data set (Table II). For the case of pressure estimation, per-
formance of the linear model is quite excellent, providing
further evidence that chamber pressure and mass spec-
trum are linearly related. In predicting power and gas mix-

ture of the test set, performance of m; iy Yy is significantly

better than M, =y ¥i, suggesting that the nonlinear transfor-
mation learned by the neural network over the training set
is sufficient for a reasonably accurate estimation of the test
data. The RMSE of the neural net for estimation from opti-
cal emission data is better than the linear estimator for all
parameters. However, this result indicates that, except for
power, all other parameters can be more accurately esti-
mated using the mass rather than the optical spectrum
measurements.

When the optical and mass spectrum data are fused, the
RMSE of the neural network is twice as good as the linear
model for estimating power, and four times as good for es-

Matched Film Filter, Left Spectrum
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0000 {0 “ﬂ,MM -

Fig. 7. (o, b) The matched
power filter for the optical emis-

300 400 300 400 500 sion data. The peaks in the power
I filter are likely to be due to CO, in

Matched Fitm Filter, Right Spectrum the left spectrum, and H, in the
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Table IV. Average root-mean-squared errors of the estimators for the test sets.
in i L _ _.NN
Parameter m; ey ¥i m; N Yi o; L 0; = Yi [m;, 6;] = Yi [m;, 8;] — i
Power 40.4 26.9 16.8 14.1 11.2 5.31
Mixture 1.46 0.71 1.91 1.54 1.31 0.30
Pressure 0.85 1.82 3.01 2.30 0.70 0.91
Thin-film 1.82 1.89 2.92 2.44 1.68 1.18

timating the gas mixture. For estimating chamber pres-
sure from the fused data, the RMSE of both the linear and
the neural network model are within 2% of the highest
pressures tested, suggesting that pressure can be very ac-
curately estimated from the optical and mass spectra of
the plasma using a linear estimator, and that the neural
network is behaving essentially like a linear estimator for
pressure. Results of Table IV also indicate that thin-film
levels can be estimated reasonably accurately (to within
4% of the highest values tested) with the neural network
when both spectra are available.

Discussion

The ability to estimate process parameters from the opti-
cal emission or mass spectrum measurements is essential
to real-time monitoring and diagnosis of RIE. For exam-
ple, if there is a leaky valve, or an inappropriate amount of
RF power is being applied, then the estimators should be
able to indicate that there is something wrong and point to
a specific process parameter as the probable cause. This
second ability, i.e., being able to decipher the effect of one
process parameter independent of another, is crucial for a
controller which attempts to match a predefined “state
trajectory” for its process, where in our case, the state of
this process is observed by the measured mass and optical
emission spectra.

Building this controller requires defining the relation-
ship between the measured variables, i.e., the bulk spectra,
and the input parameters of the process, i.e., pressure,
power, and gas mixture. But the state of the process also
depends on a set of internal parameters, i.e., thin-film con-
tamination levels, whose values cannot be manipulated by
the controller. The problem that we are concerned with is
how to estimate the process’s input and internal parame-
ters from the in situ measurements.

Through principal component analysis, we show that
nearly all of the information in each of the original spectra
can be represented by a set of four new variables. These
variables are the projections of the measured spectra onto
the first four principal components of each data set. This
transformation produces a new data set whose complexity
(as measured by its dimensionality) is minimized, while its
information content (as measured. by its variance) is al-
most identical to that of the original data set.

The plots of the new data set show a remarkably regular
clustering pattern for both the mass and optical emission
spectra. The points cluster as a function of pressure, and
the pattern within each cluster is regulated by the other
process parameters.

The relatively good performance of the linear models on
predicting pressure and thin-film levels from the mass
spectrum, and power and thin-film levels from the optical
emission spectrum, suggests that a matched filter can be
developed for each of the above transformations (Fig. 6
and 7). The output of each such filter is a scalar whose
change is equal to the change in one of the process param-
eters. These filters also convey information on how the
process parameters relate to chemical and physical phe-
nomenon. For example, from Fig. 7a and b we can forward
a conjecture that changes in applied RF power can be esti-
mated by the amount of optical emission produced by CO
and H.

Since the performance of the linear models on predict-
ing power and mixture is generally poor, we developed a
set of nonlinear estimators by constructing multi-layered
neural networks, and trained and tested both estimators
on pairs of disjoint “training” and “test” sets. The perform-

ance of the neural network-based estimators is signifi-
cantly better than that of the linear estimators (see
Table IV) for power and gas mixture, for all three sensor
modalities tested. However, these ‘results also illustrate
that it would be difficult to accurately estimate chamber
power from the mass spectrum measurements, even with a
nonlinear model, and that for estimating chamber pres-
sure from the mass spectrum data, a nonlinear model is
not expected to perform better since the performance of
the linear estimator is extremely good. Furthermore, from
Table IV we can conclude that estimating chamber pres-
sure, gas mixture, and thin-film levels can be accom-
plished much more accurately when the mass spectrum
rather than optical emission data is used (note that the lin-
ear model that used mass spectrum data out performed
both the linear and the neural network models which used
the optical emission spectrum). However, since the output
of the OES is more sensitive to power but less sensitive to
presure than the RGA, we suggest that use of both of these
sensors can result in a model whose performance is better
than when each sensor is used independently. Results
listed in Table IV appear to confirm this idea; when both
sensors are used as inputs to the neural network, thin-film
level can be estimated to within 4% of its largest value,
while power, mixture, and pressure can be estimated to
within 2% of their largest values.

The ability to estimate thin-film contamination levels
from the mass and optical emission spectra, as shown in
this report, is an important result because it has been
shown that growth of this material leads to significant re-
ductions in the Si etch rate (9), and because the current in-
vasive technique as used by the QCM is considered to be
unusable in the manufacturing floor.

Manuscript submitted April 22, 1991; revised manu-
script received Oct. 10, 1991.
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