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Neural Correlates of Motor Memory
Consolidation

Reza Shadmehr* and Henry H. Holcomb

Computational studies suggest that acquisition of a motor skill involves learning an
internal model of the dynamics of the task, which enables the brain to predict and
compensate for mechanical behavior. During the hours that follow completion of prac-
tice, representation of the internal model gradually changes, becoming less fragile with
respect to behavioral interference. Here, functional imaging of the brain demonstrates
that within 6 hours after completion of practice, while performance remains unchanged,
the brain engages new regions to perform the task; there is a shift from prefrontal regions
of the cortex to the premotor, posterior parietal, and cerebellar cortex structures. This
shift is specific to recall of an established motor skill and suggests that with the passage
of time, there is a change in the neural representation of the internal model and that this
change may underlie its increased functional stability.

As one practices a motor task, stiffness of
the limbs decreases (1), movements become
smoother (2), and the muscle activations
reflect a reliance of the motor output on an
internal model (IM) that anticipates the
force requirements of the task (3, 4). In a
computational framework, the IM for arm
movements may be characterized, in part
(5), as a map from a desired trajectory for
the hand to a set of muscle torques (6).
Because we routinely use our hands to in-
teract with a diverse variety of objects and
systems, we rely on visual and haptic prop-
erties of the task to act as cues that facilitate
recall of an appropriate IM from motor
memory (7). Attempting to pick up an
empty bottle of milk that has been painted
white readily illustrates the consequences of
visually cued recall of an inappropriate IM.

A single session of practice with a novel
mechanical system may lead to long-term
storage of an IM in the brain (8). However,
when practice ends, a functional property of
the IM continues to develop. Within 5
hours, the recently acquired IM gradually
becomes resistant to behavioral interfer-
ence (8, 9), that is, it consolidates. Al-
though the mechanisms of motor memory

consolidation are unknown, examples from
other memory systems of the brain show
that a change in the neural representation
of memory may contribute to consolidation
(10). There is also evidence that neural
representation of motor function is dynamic
(11) and that motor areas of the primate
brain are differentially associated with the
performance of either a new or well-prac-
ticed motor task (12). Here we ask whether
with the passage of time, as the IM becomes
less fragile, there is a change in the neural
representation of its motor memory.

We used positron emission tomography
(PET) to monitor changes in regional cere-
bral blood flow (rCBF), an indirect marker
of neural activity, mainly around the syn-
apses (13), as participants (n 5 16) learned
an IM of a novel mechanical system (Fig.
1A). The dynamics of the novel system
were represented as a force field and were
produced by the torque motors of a robotic
arm (6). The task was to make rapid reach-
ing movements to a series of targets while
holding the handle of the robot (14). Par-
ticipants initially practiced the task with
the robot motors turned off (300 targets,
during which no rCBF measures were tak-
en). They made accurate, straight move-
ments, similar to that shown in Fig. 1B. In
session 1, we acquired rCBF measures (15)
as participants performed the task during
two repetitions of four successive condi-
tions: (i) during a null field condition in
which the robot’s motors were off (Fig. 1B);
(ii) during a random field condition in
which the robot produced a random, non-
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stationary, velocity-dependent force field
representing an unlearnable mechanical
system (Fig. 1C); (iii) during early learning
of a force field (16) (Fig. 1D), in which the
robot produced a stationary force field we
labeled “A” and which represented a learn-
able mechanical system (Fig. 1E); and (iv)
during late learning of force field A, in
which participants performed the task skill-
fully (Fig. 1F) after further practice in field
A. When participants were first exposed to

the forces, movements deviated from the
straight-line trajectories (Fig. 1G). In the
random field, movements did not signifi-
cantly improve with practice. However,
rapid improvements occurred when the
field was held stationary. With practice, the
movements gradually converged to those
recorded in the null field condition (Fig.
1H). Participants then returned 5.5 hours
later for session 2, in which we acquired
rCBF measures during two repetitions of

only one of the following conditions: (i)
recall of the IM of field A (n 5 9 partici-
pants) or (ii) early learning of field B (n 5
7 participants) (16).

We initially asked whether during ses-
sion 1 there were brain regions where rCBF
correlated with measures of total motor out-
put. The average length of a movement was
selected as an indicator of motor output
(Fig. 1G) (17). Statistical parametric maps
were generated (18), and we found three
regions where activations significantly cor-
related with motor output: the left sensori-
motor cortex (SMC) (–58, –32, 52; Z 5
14.81; Fig. 2A), with the peak correspond-
ing to Brodmann’s area (BA) 4; the right
SMC (48, –40, 52; Z 5 13.41); and the
right putamen (30, –6, –4; Z 5 13.49).
Changes in rCBF in the SMC have been
shown to correlate with arm and finger
force production in a task that precluded
motor learning (19). Given the significant
projections from the SMC to the putamen,
it is likely that changes observed in these
regions are associated with large-scale re-
ductions in motor output from the random
to the late learning condition rather than
with acquisition of an IM.

Because learning of the IM has compo-
nents associated with visual perception,
force production, attention, and error-re-
duction processes, a comparison of the ad-
aptation condition with a rest condition
does not imply learning-related activity. To
test for learning-specific changes, we com-
pared the rCBFs during the random condi-
tion, where every component of the task
but learning was present, with that of early
learning of A. The only significant change
was an increase in a region encompassing
the dorsomedial and medial pulvinar thala-
mus (peak at 4, –24, 10; Z 5 14.47). This
increase was accompanied with increases in
the medial occipital gyrus (–14, –94, –12;
BA 18; Z 5 13.84) and dorsolateral pre-
frontal cortex (42, 40, 10; BA 46; Z 5
13.78; Fig. 2B). There were no significant
differences in comparisons of the early and
late learning conditions, other than the
decreases observed in the SMC (Fig. 2A)
and putamen. This suggests that the im-
provement in performance from the ran-
dom to the learning condition during ses-
sion 1 was at least in part due to an increase
in activation of visuomotor association ar-
eas of BA 46 in the prefrontal cortex (20).

We found that with the passage of time,
however, significant changes took place in
the representation of the IM. Participants
returned 5.5 hours after completion of ses-
sion 1 and were presented with either field
A or a novel field B. Motor performances
during the late learning stage of A and the
recall stage of A were not significantly dif-
ferent (Fig. 1, G and H). However, there
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Fig. 1. The motor learning task. (A) Participants gripped the handle of a robot manipulandum and moved
it to targets that appeared on the monitor in one of eight directions: 0 to 315° in 45° increments,
randomly selected (8). Participants were provided with continous visual feedback. The task was to reach
the target in a precise time (14). We acquired PET scans during five conditions: null field (robot motors
not engaged); random force field (robot motors producing a nonstationary field); early learning of field A
(16); late learning of field A; and, at 15.5 hours, recall of field A or early learning of field B. (B) Hand
trajectories (mean 6SD) for a typical participant during the null field condition. (C) Typical hand trajec-
tories during a random field condition. The robot’s motors produced a velocity-dependent force field
that randomly varied from target to target. This substantially disturbed the hand trajectories and required
corrective movements while precluding the possiblity of learning an IM. (D). The force field A (16). (E)
Trajectories (mean 6 SD) during the early learning stage of field A (first 100 movements) for a typical
participant. (F) Trajectories (mean 6 SD) during the late learning stage of field A (last 100 movements) for
a typical participant. (G) Length (mean 6 SE) of reaching movements during task performance. Each
point is an average of eight movements. Gray bars indicate periods of brain image acquisition. There was
no significant improvement during the random field condition. However, participants were skillfully
controlling their arms during the late stage of learning of A and were able to recall the appropriate IM at
15.5 hours. Performances were not significantly different at recall versus late learning. (H) Hand
trajectories for each participant during each condition were correlated with that participant’s typical
trajectory during the null condition (6). Shown here are the population mean 6 95% confidence intervals
(CI). With practice, movements converge to the trajectories recorded in the null field.
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were significant increases in rCBF in three
structures: in the left posterior parietal cor-
tex (–30, –78, 54; BA 7; Z 5 14.95; late A
versus recall A; Fig. 3A); the left dorsal
premotor cortex (PMC) (–50, –16, 60; BA
6; Z 5 13.74; late A versus recall A; Fig.
3B); and the right anterior cerebellar cortex
(18, –60, –20; Z 5 14.93; early A versus
recall A; Fig. 3C). These changes were spe-
cific to recall of the previously learned field.
The group that was presented with field B
during session 2 did not show similar chang-
es, despite the fact that they had an in-
creased motor output (Fig. 1G). We also
found that recall of A involved significantly
decreased levels of rCBF (with respect to
late A) in the left (–46, 32, 28; BA 46; Z 5
–4.97) and right (42, 28, 20; BA 46; Z 5
–4.39) middle frontal gyri of the prefrontal
cortex. The decreases in rCBF observed in
these two regions were 7.0 6 1.9% and
5.1 6 2.0% (mean 6 95% confidence in-
terval) for the left and right prefrontal re-
gions, respectively. In comparison, no sig-
nificant decreases were observed in the pre-
frontal cortex when participants were pre-
sented with field B.

It has been hypothesized that acquisition
of a skilled movement is mediated principal-
ly through structures in the prefrontal cor-
tex, and that with time or practice, as the
task becomes “automatic,” motor structures
such as the cerebellum assume a greater role
and possibly become the site of the motor
memory (21). There is evidence that in hu-
mans, disruption of the prefrontal cortex pre-
vents motor learning without disrupting mo-
tor execution (22). In our experiment, ac-
quisition of the IM was associated with in-
creased activation in the dorsolateral
prefrontal cortex. Although the performance
of our participants neared asymptotic levels
during the late stage of learning (23), we did
not observe an increased role for the anterior
regions of the cerebellum or other motor
structures with respect to random or early
learning. This is in agreement with a number
of other PET studies of motor learning (24,
25). However, we cannot rule out the influ-
ence of the cerebellum in initial acquisition
of the IM, because posterior regions of the
cerebellum were not sampled (18). When
the participants were retested at 15.5 hours,
there was no significant change in motor
performance. However, comparison of rCBFs
between recall and late learning stages of A
revealed that there was a significant reorga-
nization of the representation of the memory
of the IM. With the passage of time, recall of
the IM engaged areas of the contralateral
dorsal premotor, contralateral posterior pari-
etal, and ipsilateral anterior cerebellar cortex
structures. This was coincident with a reduc-
tion in activations of the bilateral middle
frontal gyri of the prefrontal cortex. The

decreased role of the prefrontal cortex has
been observed in other studies in which a
previously learned motor skill was recalled
(25, 26).

A function of the prefrontal cortex is
temporary storage of arbitrary sensorimotor
information for use in the near term (27).
Inherent in this faculty is the transient
nature of the associations (28). Previous
results on learning control of novel me-
chanical systems suggest that the represen-
tation of an IM in humans is most fragile
soon after it has been acquired (8, 9). With-
in 5 hours after initial practice, the IM’s
representation becomes resistant to behav-
ioral interference. We have shown here
that this change in the functional stability
of the acquired memory coincides with a
reduced activation in the prefrontal struc-
tures and an increase in regions of the brain
where long-term motor memory storage has
been hypothesized (29).

Recordings of electromyographic activ-
ity from the arm during practice of this
task suggest that participants gradually
learn to recruit new arm muscles and pre-
cisely control the timing of activations of
these muscles in order to compensate for
the force field (30). Studies of similar
tasks in highly trained monkeys suggest
that the cerebellum is likely to play a

critical role in generating this response
(3). In humans, cerebellar malfunction re-
sults in the loss of ability to anticipate and
compensate for interaction torques that
are generated in multijoint arm move-
ments (31). Although the role of the cer-
ebellar cortex in initial acquisition of the
IM is unclear (32), it has been shown that
within an hour after completion of motor
learning, biochemical processes that are
involved in the synaptic remodeling of
Purkinje cells are initiated (33). There-
fore, it seems likely that the cerebellum is
part of the system that maintains long-
term motor memories. On the other hand,
lesion, inactivation, and recording studies
of the PMC suggest that it is primarily
involved in retrieval of a motor response
as cued by a visual or auditory stimulus
(34). Neuronal recordings show a phase
lag between increased activity in some of
the cells in the dorsal PMC and behavioral
improvement (35). This has suggested
that PMC cells function in the retrieval
processes of an established visuomotor as-
sociation, rather than in learning of the
association (36). A major input to the
dorsal PMC is from the posterior parietal
cortex (37). The architecture of this net-
work has been proposed to code reaching
movements as the result of a combination
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of visual and somatic information (38).
Indeed, parietal lobe lesions produce
apraxia, an impairment of skilled move-
ments in the absence of elementary sen-
sory or motor deficits. Motor memory def-
icits in apraxic patients suggest a loss of a
component of the IM (39).

The results presented here suggest that
the representation of a motor skill is reor-
ganized in the brain shortly after an IM has
been acquired. Although this reorganiza-
tion does not affect task performance, it
may contribute to increased stability of the
representation of the motor skill.
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Fig. 3. Brain regions showing a significant increase in rCBF from the learning stage of field A to recall of
field A at 15.5 hours. The regions are shown on the normalized MRI of a typical participant (18). (A)
Transverse view of an area in the left posterior parietal cortex (peak location at –30, –78, 54; BA 7; Z 5
14.95; late A versus recall A) and the peak location’s changes in rCBF with respect to the null field (mean
95% CI). Shown also are the changes in rCBF from the group of participants that learned a novel field B
at 15.5 hours. (B) Transverse view of an area of activation in the left dorsal premotor cortex (–50, –16,
60; BA 6; Z 5 13.74; late A versus recall A). (C) Sagittal view of an area of activation in the right anterior
cerebellar cortex (18, –60, –20; Z 5 14.93; early A versus recall A). The increased activations in these
regions were specific to recall of the recently acquired IM of field A.
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Drosophila Mitotic Domain Boundaries as Cell
Fate Boundaries

Sidney B. Cambridge, Robert L. Davis, Jonathan S. Minden*

Fate determination in Drosophila embryos is evidenced by the appearance of mitotic
domains. To identify fate or fates of cells, individual cells in mitotic domains 2, 8, and
15 were marked and monitored through development. Comparison of the different fates
indicated that domain boundaries are cell fate boundaries. Cells were marked by ex-
pression of GAL4-dependent transgenes after photoactivation of a caged GAL4VP16
analog that had its DNA binding activity inhibited with a photolabile blocking reagent.
Caged GAL4VP16 was also used to induce gene expression in Xenopus embryos. Thus,
photoactivated gene expression is a versatile tool for spatiotemporal control of gene
expression.

To control the temporal and spatial ex-
pression of selected genes at the single-cell
level for the purpose of fate mapping and
genetic manipulation, we devised a method
for “caging” the DNA binding activity of
GAL4VP16, a potent transcriptional acti-
vator. Caging is a form of photo-reversible
chemical modification that has been used
in the light-mediated activation of mole-
cules such as adenosine 59-triphosphate,
Ca21-chelators, and actin (1). Caged
GAL4VP16 was produced by modifying ly-
sine residues of purified GAL4VP16 (2)
with the amine-reactive compound 6-nitro-
veratrylchloroformate (NVOC-Cl) (3).
GAL4VP16 DNA binding activity was
abolished after a 30-min incubation with 2
mM NVOC-Cl under mildly basic condi-
tions (Fig. 1A). More than 50% of the
initial binding activity was recovered by
irradiating the caged GAL4VP16 with a
low-intensity, long-wavelength (365 nm)
ultraviolet (UV) lamp.

Caging of GAL4VP16 with 0.5 mM

NVOC-Cl, which modified about 8 of the
14 GAL4VP16 lysines (4), completely in-
hibited in vivo transcriptional activation in
Drosophila embryos (5). This level of caging
did not affect GAL4VP16 DNA binding
activity in vitro (Fig. 1A). It is not known
why the lower level of caging inhibited in
vivo activity (6). Inhibition of the transcrip-
tional activity of caged GAL4VP16 could be
reversed in vivo with 365-nm light from a
100-W mercury lamp shone through a mi-
croscope objective via the epi-fluorescence
light path of a standard inverted microscope.
Experiments with Drosophila embryos re-
quired 3 to 4 s of irradiation (7) for maximal
photoactivation.

We determined the efficiency of
GAL4VP16-mediated photoactivated gene
expression by quantitating the fluorescence
of coinjected RGPEG (8), a fluorogenic b-
galactosidase (b-Gal) substrate, in embryos
that contained a GAL4-dependent lacZ con-
struct (UASGlacZ) (Fig. 1B). GAL4VP16
was usually injected at a concentration of 0.2
mg/ml or less (9). Concentrations of unmod-
ified or caged GAL4VP16 greater than 0.4
mg/ml caused developmental defects. This
may have resulted from squelching, where
general transcription factors bound to the
acidic domain of unbound GAL4VP16 (10).
Injection of RGPEG alone or with caged
GAL4VP16, but not followed by irradiation,
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